School of Science and Engineering

	pages
School of Science and Engineering staff	148-150
Course Information	
Bachelor of Applied Science	151-153
Bachelor of Applied Science (Food Science and Technology)/Bachelor of Management	153-154
Bachelor of Applied Science (Honours)	154
Bachelor of Engineering Science	154-157
Bachelor of Engineering Science / Bachelor of Computing	157-158
Bachelor of Engineering (no intake beyond 2001)	158-160
Bachelor of Engineering (no intake beyond 2000)	160
Bachelor of Engineering (no intake beyond 1996)	160
Bachelor of Engineering/Bachelor of Commerce (no intake beyond 2000)	160
Bachelor of Engineering / Bachelor of Computing (no intake beyond 2001)	160-162
Bachelor of Engineering/Bachelor of Management (no intake beyond 1999)	162
Graduate Certificate of Brewing	162-163
Graduate Diploma of Brewing	163
Graduate Certificate of Food Science	163-164
Graduate Diploma of Land Rehabilitation	164
Graduate Diploma of Mining	164
VIOSH Australia Courses	
Certificate IV in Occupational Health & Safety	167
Graduate Certificate in Occupational Hazard Management	167-168
Graduate Diploma in Occupational Hazard Management	168-169
Master of Applied Science (Occupational Health & Safety) (by Coursework)	169
Higher Degrees by Research	
Master of Engineering Technology	165
Master of Applied Science	166
Master of Engineering Science	166
Doctor of Philosophy	166
Doctor of Engineering Science	166
School of Science and Engineering units	170-172

School of Science and Engineering

The School of Science and Engineering is made up of scholars and teachers dedicated to teaching, research and consultancy in a number of integrated disciplines which support specialised studies in Civil Engineering, Environmental Management, Exploration and Environmental Geology, Food Science and Technology, Mechanical/Electrical Engineering, Mining Engineering and Occupational Health and Safety.

The School of Science and Engineering aims to develop students who think critically and creatively, drawing together all areas of student activity and incorporating such innovations as project-based and experiential learning. The School also conducts consultancy, research and development work, seminars and industry training courses on areas relevant to the mission of the School.

Whilst many of our activities are based in laboratories and associated facilities at the Mt Helen Campus, many other activities occur in field situations and association with Industry. Field trips are conducted in locations including the School Rangeland Research Station at Nanya in far western NSW, and other locations such as the Otway Ranges, the Flinders Ranges and Broken Hill. As well, excursions are conducted to regional industries such as manufacturing and mining facilities, wineries and dairy processing industries. Features on the campus associated with the School include the Arboretum, Electronics, Power and Robotics laboratories, Fluids and Thermofluids laboratory, the Glasshouse complex, Soils and Minerals laboratories, and the Structures testing laboratory.

The General School Office is located at the head of the internal stairs in Building S. The School is located in E. F. G and S buildings and the Industry Science building

Head of School

Martin E Westbrooke	BSc Lond., MSc LaT., LittB UNE, PGCE, PhD LaT., MIFA	Professor
Academic Staff		
Stephen Hall	BSc(Hons) Burningham, MAppSc WA School of Mines, PhD McGill	Assoc Prof
Peter Aldred	BSc(Hons) Melb., PhD Melb., MAIFST	Sr Lect
Peter Dahlhaus	BAppSc, MAppSc RMIT	Sr Lect
Robert I W Greig	DipAppSc, BAppSc(Hons) <i>Qld Ag Coll</i> , MSc <i>Alta.</i> , MA <i>Deakin</i> , GCertTT <i>Ballarat</i> , AAIFST, MIBrew.	Sr Lect
Barry J Kentish	BSc(Hons), PGCE Lond., MSc Durh., MEd Melb.	Sr Lect
John P Murray	BSc, DipEd Qld., MAppSc BUC	Sr Lect
Patrick T Prevett	BSc Lond., LittB, DipTertEd UNE	Sr Lect
Michael A Tuck	BSc(Hons)(MiningEng) <i>Nott.</i> , PhD <i>Nott.</i> , FMVSSA, MAIME, MAUSIMM	Sr Lect
Grame J Ambrose	BSc(Hons), PhD LaT.	Lect
Stephen P Carey	BSc(Hons) Melb., PhD Wis.	Lect
Kim Dowling	BSc(Hons) NSW, GDipEnvMan Deakin, PhD James Cook	Lect
Shirani Gamlath		Lect
Trevor D Gourley	DipCE BendigoIT, BEng(Civil) Monash, GCertTertTeach Ballarat, MIEAust, CPEng	Lect
Graeme K Hood	BAppSc <i>BCAE</i> , DipTT <i>SCV Haw</i> , MEng <i>RMIT</i> , MAIP, MIEEE	Lect
Samundra Jayaseke	ra DipTech(Civil) <i>Moratuwa</i> , BEng(Civil)(Hons) <i>Swinburne UT</i> , GradCert(TTL) <i>Swinburne UT</i>	Lect
Stafford W McKnight	BSc(Hons) Newcastle (NSW), CertTeach STC	Lect
John Miller	BAppSc BUC	
Carolyn M Russell	BTech(Hons)(Biotech), PhD <i>Massey,</i> GCertTT <i>Ballarat,</i> MAIFST, MASM	Lect
Ibrahim Sultan	BSc, MSc Cairo, PhD W. Aust., MIEAust, MASME, MIEEE	Lect
Lara Wakeling	BAppSc(Hons) Ballarat, PhD Qld., MRACI, MAIFST	Lect
Michael Wilson	BSc Macq., MSc Macq., PhD Ballarat	Lect

Associate Academic Staff

Brian Chappell	BSc(Eng), MEngSc, PhD ANU, DipAppSc(Geol), FAusIMM, MIEAust, CPEng
Simon P Fenton	BSc(Hons) LaT., PhD Melb.
Paul Gullan	B.Sc(Hons) Monash, PhD Monash
Martin Hughes	ARMÌT, FRMIT, PhD Wis.
lan J McKee	BSc(Hons), PhD NSW, DipEd(Tert), AIME, MIM, FIEAust, CPEng
Vince Morand	BSc Syd., PhD Syd.
Robert Pyke	DipMet SMB, BSc Melb, DipEdTert Monash, MAppSc Melb.,MIEAust, CPEng
Roy R Schrieke	BSc(Hons) Qld., GDipEd(Admin) Deakin, PhD Monash, FRACI
Ian R K Sluiter	BSc(Hons) Monash, PhD Melb.
I Mont Stuart	BSc(Hons) LaT., MSc LaT.

Technical Staff

Bruce Armstrong BAppSc(Hons) Ballarat Technical Assistant Paul G Bennett Laboratory Tech Wendy Cloke Laboratory Tech Neil W Hives Technical Officer BSc(Hons), MSc LaT. Robert Smith Technical Assistant Julie Worrall Laboratory Tech

Administrative Staff

Leanne Cocks CertIII(OfficeAdmin) Ballarat Admin Assistant Sue D Hynes AssDipBus(OffAdmin) SMB, GDip Management Administration Manager

Ballarat, ATEM

CertPerfArts SMB, CertVocStudies Adrienne L Ryan Student Liaison Officer

(Office/Finance)SMB

Sue E Taylor PA to Head

Special Projects Staff

Paul Revnolds BAppSc Ballarat, GDEd (Sec) Ballarat On Line Development Officer BSc James Cook Uni. DipEd Science & Schools Project Officer Stephanie Davison

Research, Higher Degree and Ethics Coordinators

BSc(Hons) Melb., PhD Melb., MAIFST Peter Aldred

BSc(MechEng) Bagdad, MSc Liv.J.Moores, PhD Herts., Sarim N Al-Zubaidy

ImechE, AIAA, ASME, SAE, IDiagE, EurEng

CENTRE FOR ENVIRONMENTAL MANAGEMENT

The Centre for Environmental Management is a Designated Priority Research Centre within the University of Ballarat. The Centre is active in research and consultancy in all aspects of Environmental Management for both Government and private organisations. The Centre staff include botanists, zoologists, ecologists, and land use planners and maintains close associations with a wide range of related professionals in other fields such as Social Science, Economics, Archaeology and Cultural Heritage Management. The Centre is a recognised leader in computer resources and mapping packages in environmental management.

Martin Westbrooke BSc Lond, MSc LaT, LittB UNE, PGCE, PhD Director (Professor) LaT, MIFA Jim O'May BArch Melb., MEnvSc Monash Research and Consulting Manager Research (GIS) Officer Matthew Gibson BAppSc Ballarat Stacey Gowans BAppSc(Hons) Ballarat Research/Project Officer Research/Project Officer Claire Harding BAppSc Uni of SA, BAppSc(Hons) Ballarat Janet Leversha BAppSc Ballarat Assist. Research and Consulting Manager Research/Project Officer Robert Milne BAppSc Ballarat

VIOSH AUSTRALIA

The Asia-Pacific Centre for Teaching and Research in Occupational Health and Safety A Centre within the School of Science and Engineering

VIOSH Australia coordinates a number of highly-regarded teaching programs in occupational health and safety, including what were Australia's first, and remaining best-known, tertiary OHS programs. VIOSH Australia also conducts industry training courses for various organisations and enterprises on contract. The research activities of VIOSH Australia are practically oriented towards solving occupational health and safety problems.

One of the philosophies of VIOSH Australia is that great benefits can be derived from "closing the gap" between what is already known and what is applied widely in the community. Many VIOSH Australia projects have been concerned with developing, implementing and monitoring occupational health and safety educational programs for specialists and non-specialists.

Dennis Else (Professor in OH&S)	BSc Salford, PhD Aston	Director
David M Borys	AssocDipAppSc(OHS) Victoria UT, GDipOHM Ballarat GCertEd Ballarat, MAppSc(OHS) Ballarat, FSIA, MAIRM	Snr Lect & Manager
Paul Brass	DipMet Lond, CertNoise Deakin, CertOHS Ballarat, IEng, AMIM	Consultant
Dianne Elshaug	DipBusAdmin Ballarat	Admin Officer
Chrissie Hyman	BA Ballarat, GCertEd Ballarat, CertIVOH&S Ballarat	Commercial Programs

Coordinator

Associate Staff

Zig Plavina

BSc(OHS)(Hons) *Aston*, MSc(OccHyg) *Lond*., GCertEd *Ballarat*, MSIA, MBOHS MEIAust, CPEng Stephen Cowley

MEIAUST, CPEng
International Baccalaureate (bilingual), BA(Hons) Melb., BSc
Melb, MESA, AFAHRI
BSc Witw, MSc Cran.
DipEd Leeds, BSc Leeds MSc Melb., DAppSc Melb.,
MD hc. Tas., FSIA Andrea Shaw

Derek Viner

Eric Wigglesworth

School of Science and Engineering Courses

Bachelor of Applied Science

COURSE COORDINATOR

Mr John Murray

ADMISSION REQUIREMENTS

Applicants must have satisfactorily completed VCE including prerequisite Units 3 and 4 one of Biology, Physics, or Chemistry; and a study score of at least 20 in mathematics (any).

All Year 12/VCE applicants must apply through VTAC. Non-Year 12 applicants applying through VTAC are encouraged to complete Form SI. Alternatively Non-Year 12 applicants can apply direct to the University through the Tertiary Access Scheme. Refer to the Admissions, Policy and Procedures section in this Handbook.

CREDIT POINTS

DURATION

3 years full-time or part-time equivalent

MODE

Semester (day)

COURSE OVERVIEW

The Bachelor of Applied Science aims to provide graduates with a program of study which will give them a competitive edge in obtaining employment in a variety of science disciplines, a training in science which gives graduates a foundation of knowledge and skills and a preparation for continued lifelong learning.

COURSE OBJECTIVES

The course is designed to:

- Attract students with diverse backgrounds in science and to enable them to enter careers in the focus disciplines of the School;
- Provide undergraduate programs which draw on the strengths developed over recent years in the areas of Environmental Management, Exploration and Environmental Geology, Food Science and Technology and Mineral and Manufacturing Metallurgy;
- Focus the programs on applied and vocational aspects and provide graduates with a competitive edge to enter the work force;
- · Provide graduates who will service community needs in these four focus disciplines; and
- · Forge and consolidate existing links with relevant local, regional and national community, industry and government organisations.

COURSE STRUCTURE

The BAppSc is a three year full-time course founded on some common first semester units of studies with the choice of at least one elective unit of study. The choice of program can be made on commencement or at the end of the first semester and in some cases at the end of the first year. Major programs of study

- · Environmental Management;
- · Food Science and Technology; and
- · Exploration and Environmental Geology.

Recommended program structures in each of the three focus disciplines are presented on the basis that timetable guarantees will be made. students choose their own program within the course structure guidelines, no such guarantees will be made

The overall course structure is presented below:

Year 1

Four 15 CP units per semester selected from the chosen program allowing at least 1 elective.

Years 2 & 3

A student's chosen program continues allowing at least 1 elective in each semester. Students may take science units as their electives. Electives may be chosen on the basis of program recommended lists. Alternatively, a free selection may be made. In all cases, students must consult with the relevant Program Coordinator. Recommended structures of the three BAppSc programs are listed below. Students may take at least one elective in the chosen program in any semester. These may be single electives or part of a sequence of electives. constituting a minor strand eg. in Computing. Details are provided in the program structures below.

ENVIRONMENTAL MANAGEMENT

PROGRAM COORDINATOR

Mr Barry Kentish

The Environmental Management program is a transdisciplinary approach using knowledge, skills and attitudes from a range of disciplines such as environmental science, ecology, zoology, botany, geology, philosophy, and the social and political sciences. It builds these different disciplines into a coordinated, coherent unit of knowledge applicable to solving problems and making decisions for the environment and community.

The program recognizes the need for the appropriate professional education of environmental managers in the new millennium. Knowledge, skills and attitudes presented during the course are embedded in the professional contexts where the graduate will ultimately be employed. Throughout the course emphasis is placed on developing professional skills encouraged and required by industry, government and commerce - skills such as learning how to solve laterally, problems; thinking logically independently; creativity and flair; intellectual rigour and professional integrity; leadership and supervision skills; learning how to cooperate and work in a team; consideration of ethical practice; critical and evaluation skills; interpersonal skills; a willingness to learn and relearn; in addition to a range of communication techniques and methods.

rear 1		
unit	Semester 1	credit
code		points
	Core:	
SE522	Environmental Management	15
SE560	Australian Ecosystems	15
	Plus 2 electives, from:	
SX511	Earth Science	15
SF511	Chemistry	15
	Or another approved elective.	
	Semester 2	
	Core:	
SE520	Australian Biota	15
SE532	Ecological Methods	15
MS501	Statistics	15
Plus a elective from		
SX522	Landscape Evolution	15
Or another approved elective		

Year 2

rear z		
unit	Semester 1	credit
code		points
	Core:	
SE672	Geographic Information	
	Systems	15
SE640	Australian Fauna	15
SE662	Pests Plants and Animals	15
	Plus an approved elective.	
	A recommended elective is:	
SE653	Wetlands	15
	Semester 2	
	Core:	
SE622	Environmental Ethics &	
	Philosophy	15
SE630	Population and Community	15
	Ecology	
SE680	Australian Flora	15
<u></u>	Plus an approved elective.	

Year 3

Semester 1	credit	
	points	
Protected Area Management	15	
Survey and Assessment	15	
Plus two electives from the		
following:		
Flora Management	15	
Forest Management	15	
Catchment Management	15	
Or another approved elective.		
Semester 2		
Core:		
Environmental Management		
Project	15	
Reserve Management	15	
Plus 2 electives from:		
Fauna Management	15	
Rangeland Management	15	
Or another approved elective.		
	Protected Area Management Survey and Assessment Plus two electives from the following: Flora Management Forest Management Catchment Management Or another approved elective. Semester 2 Core: Environmental Management Project Reserve Management Plus 2 electives from: Fauna Management Rangeland Management	

EXPLORATION & ENVIRONMENTAL GEOLOGY

PROGRAM COORDINATOR

Dr Stephen Carey

This is an applied degree program for students with an interest in Earth Science who wish to pursue professional careers in mineral and oil exploration, extractive industries, environmental science and hydrology and other areas associated with the Earth Sciences.

The program's strong applied orientation is aimed at equipping students with the training and experience necessary to participate in the intellectual and economic life of Australia.

Year 1

unit	Semester 1	credit
code		points
	Core:	
SX511	Earth Science	15
	Plus three approved electives	
	(Two Science plus one other).	45
	Semester 2	
SX521	Planet Earth	15
SX522	Landscape Evolution	15
SX523	Earth's Living History	15
	Plus an approved elective.	15
	Tius arrapproved elective.	10

Year 2

unit	Semester 1	credit
code		points
	Core:	
SX628	Hydrology	15
SX618	Structural Geology	15
SX619	Sedimentology	15
	Plus an approved elective.	
	A recommended elective is:	
SX601	Regolith Science	15
	Semester 2	
	Core:	
SX627	Economic Geology	15
SX617	Optical Mineralogy	15
SX629	Field Work Principles and	
	Practice	15
Plus an approved elective.		
Recommended electives are:		
SX630	Geological Data Analysis	15
SF670	Soil Science	15

Year 3

unit	Semester 1	credit
code		points
	Core:	
SX717	Petrology	15
SX718	Applied Geochemistry	15
SX719	Field Work	15
	Plus an approved elective.	
	A recommended elective is:	
SX733	Engineering Geology	15
	Semester 2	
	Core:	
SX726	Applied Stratigraphy	15
SX728	Applied Geophysics	15
SX729	Project	15
	Plus an approved elective.	
	Recommended electives are:	
SX732	Advanced Field Work	15
SX730	Analytical Techniques	15

NB:SX719 & SX729 available in either Sem. 1 or 2.

FOOD SCIENCE & TECHNOLOGY

PROGRAM COORDINATOR

Mr Robert Greig

The Food Science and Technology program includes disciplines and skills such as chemistry, biology, engineering, sociology, and microbiology and is a vocational program which requires the application of theoretical knowledge and practical skills from a wide range of these disciplines. Professional development in this field relies upon a sound, functional grounding in applied science together with the skills needed to apply this science to practical situations.

The Bachelor of Applied Science (Food Science and Technology) is professionally accredited by the Australian Institute of Food Science and Technology (AIFST).

i eai i		
unit	Semester 1	credit
code		points
SF552	Food Science and Nutrition	15
MS501	Statistics	15
SF511	Chemistry 1	15
	Plus an elective.	
	Semester 2	
SF512	Chemistry 2	15
SF532	Intro Microbiology	15
	Plus two approved electives.	
	Recommended electives are:	
SF553	Food in Society	15
SF514	Nature of Food	15

Year 2

. oa. =		
unit	Semester 1	credit
code		points
	Core:	
SF621	Food Processing Systems I	15
SF641	Food Analysis	15
SF631	Food Microbiology I	15
	Plus an approved elective.	
	Recommended electives are:	
SF651	Applied Biochemistry	15
	Semester 2	
	Core:	
SF622	Food Processing Systems 2	15
SF642	Food Chemistry	15
SF632	Food Microbiology 2	15
	Plus an approved elective.	
	Recommended electives are:	
SF653	Nutrition and Metabolism	15
SF514	Nature of Food	15
V 2		

Year 3		
unit	Semester 1	credit
code		points
	Core:	
SF721	Food Processing Systems 3	15
SF741	Advanced Food Chemistry	15
SF731	Fermentation Technology	15
	Plus an approved elective.	
	Recommended elective is:	
SF752	Food Biotechnology	15
	Semester 2	
	Core:	
SF722	Product and Process	
	Development	15
SF761	Food Quality Management	15
*SF771	Research Project	15
	Plus an approved elective.	
	Recommended elective is:	
SF732	Malting and Brewing Science	15

^{*} SF771 is also available in Semester 1.

Bachelor of Applied Science (Food Science and Technology)/ **Bachelor of Management**

COURSE COORDINATOR

Mr John Murray

COURSE ADVISORS

Mr Robert Greig (Food Science) Ms Lindon Marks (Management)

ADMISSION REQUIREMENTS

As per admission requirements for each of the degrees.

CREDIT POINTS

540 : Food Science - 240; Management - 240; Electives - 60

Equivalent of 4.5 years full-time. May be completed in 4 years by overloading by one unit per year (see course structure).

MODE

Semester (day)

COURSE OVERVIEW

The Bachelor of Applied Science (Food Science and Technology)/Bachelor of Management combined degrees provide students with the opportunity to undertake in-depth studies in the areas of Food Science and Technology and Management. For further information on the range of offerings from the Bachelor of Management, please refer to the

Bachelor of Management entry in the School of Business section of this handbook.

Students graduating with the combined degrees receive two degree testamurs – one for each degree.

The course has been professionally accredited by the Australian Institute of Food Science and Technology.

COURSE OBJECTIVES

A key role in the food industry is that of the food scientist who develops and manages systems for efficient, safe and high quality food processing. Those students who combined their food science and technology skills with training in management and marketing will be the graduate that the food industry will be looking for to lead it into the new opportunities that will emerge in the future.

Year 1

i c ai i		
unit	Semester 1	credit
code		points
SF552	Food Science and Nutrition	15
SF511	Chemistry 1	15
	B Management	15
	B Management	15
	Semester 2	
SF512	Chemistry 11	15
MS501	Statistics	15
	B Management	15
	B Management	15
	An elective	15

Year

i cui L		
unit	Semester 1	credit
code		points
SF621	Food Processing Systems I	15
SF641	Food Analysis	15
	B Management	15
	B Management	15
	An elective.	
	Semester 2	
SF532	Intro Microbiology	15
SF622	Food Processing Systems 2	15
SF642	Food Chemistry	15
	B Management	

Year 3

unit	Semester 1	credit
code		points
SF631	Food Microbiology	15
	B Management	15
	B Management	15
	B Management	15
	Semester 2	
SF632	Food Microbiology	15
	B Management	15
	B Management	15
	B Management	15
	An elective.	15

. oa		
unit	Semester 1	credit
code		points
SF721	Food Processing Systems 3	15
SF741	Advanced Food Chemistry	15
	B Management	15
	B Management	15
	An elective.	
	Semester 2	
SF722	Product and Process	15
	Development	
SF761	Food Quality Management	15
SF771	Research Project	15
	An elective.	15

PROFESSIONAL RECOGNITION

Successful completion of these combined degrees will admit graduates as members of the Australian Institute of Food Science and Technology and relevant professional management associations depending on the majors chosen.

Bachelor of Applied Science (Honours)

COURSE COORDINATOR

Dr Graeme Ambrose

ADMISSION REQUIREMENTS

A three-year undergraduate degree in Applied Science with final year results of a Distinction grade

CREDIT POINTS

120

DURATION

1 year full-time or part-time equivalent

MODE

Semester (day)

COURSE OVERVIEW

The Honours program is offered by research. Prospective candidates must submit to their potential supervisor a research proposal for consideration. The research topic must be within a discipline or research area of the academic staff of the School. (Please refer to Higher Degrees by Research at the end of this section.)

COURSE OBJECTIVES

The course aims to:

- Provide students with the opportunity to increase their specialist knowledge of and develop their skills in their major field of interest in Applied Science; and
- Provide research training for students by developing their ability to identify and design research solutions and to organise and conduct research in an independent manner.

Students will develop the ability to critically analyse scholarly work conducted in Applied Science and assess the relevance of the existing knowledge base in their specialist field.

COURSE STRUCTURE

Candidates will be required to successfully complete:

unit	Semester 1
code	
SS817	Literature Review
SS815	Research Thesis
SS819	Elective
	Semester 2
SS818	Literature Review
SS816	Research Thesis
SS820	Elective

Bachelor of Engineering Science (2002)

(Civil Engineering) OR (Mechanical/Electrical Engineering) OR (Mining Engineering)

COURSE COORDINATOR

Dr Michael Tuck

ADMISSION REQUIREMENTS

Applicants must have satisfactorily completed VCE or equivalent. Specific requirements for the course include prerequisite Units 1 and 2 Mathematics (any), and Units 3 and 4 Mathematical Methods.

Applicants who have successfully completed Specialist Mathematics will be deemed to have a

Equivalent National Tertiary Entrance Rank (ENTER) of 5 percentage points higher.

All Year 12/VCE applicants must apply through VTAC. Non-Year 12 applicants applying through VTAC are encouraged to complete Form SI. Alternatively Non-Year 12 applicants can apply direct to the University through the Tertiary Access Scheme. Refer to the Admissions, Policy and Procedures section in this Handbook.

CREDIT POINTS

DURATION

3 years full-time or part-time equivalent

Semester (day)

COURSE OVERVIEW

The Bachelor of Engineering Science course is an integrated design-oriented course which aims to produce creative, technically-competent professional engineering graduates who have knowledge of the social, environmental, economic and organisational aspects of their work.

The applied design theme has a distinctive industry focus targeting the mineral and food industries, as well as service-oriented private professional consultancy. The main characteristic of the curriculum is applied design in a systems context, which is encompassed by the three study majors. Students select from one of the following three elective sequences: Mechanical/Electrical, Engineering, or Mining Engineering.

COURSE OBJECTIVES

This is a vocationally orientated course that provides students with the knowledge and skills that are necessary to obtain employment as an engineering technologist and to be admitted as an Engineering Technologist with the Institution of Engineers, Australia. The course also serves as a preparation for graduate studies in technology, business administration and other areas. Specifically the course provides students with a core of basic analytical and communication skills, common to all branches of engineering, and then permits students to undertake in depth study of either civil engineering (infrastructure), mining or mechanical/electrical engineering. In addition, students are equipped with a basic knowledge of the industrial and social environments in which they will function as engineering technologists.

A student who successfully completes the course should be able to demonstrate:

- basic knowledge and skill in analysis;
- a knowledge of the branch of engineering chosen as their major study of sufficient depth for the student to gain employment as an engineering technologist within their field of specialisation;
- an ability to analyse and propose solutions to technical problems in accordance established practices and procedures;
- a high degree of written and oral communication
- computer literacy;
- a capacity to adapt to changing circumstances and master new techniques;
- an aptitude to undertake further learning and

- a basic understanding of the operation of the industrial and social environments in which they will function;
- eligibility for admission as an Engineering Technologist of the Institution of Engineers Australia; and
- a knowledge of the principal journals and other major information sources relevant to their field of specialisation, and an ability to comprehend and utilise data from these sources.

The core-engineering units enable students to:

- Build a strong foundation of knowledge, skills and attitudes in the fundamentals of engineering and related sciences and mathematics;
- Develop knowledge, skills and attitudes through unifying themes that generate understandings of engineering as a whole rather than a fragmented, piecemeal understanding of separate parts;
- Develop knowledge, skills and attitudes appropriate to their field of study that they will continue to be able to apply in the range of work settings well into the future, despite the explosion of knowledge and the emergence of technologies that are relentlessly causing narrow, specific knowledge and skills to become redundant;
- Develop an industry focus as their interests and opportunities for employment become clearer, thus ensuring their qualifications will be recognised by industry and other employing agencies;
- Explore significant aspects of their chosen profession, particularly engineering design, in a hands-on practical, way, commencement of their study;
- Develop the capacities of lifelong learning and transferable/generic skills in an integrated fashion through the content and methodologies of the core and elective units of their study program;
- Increasingly take responsibility for their own learning through the implementation of studentcentred, resource-based learning approaches.

The integrated design oriented core has the following emphasis throughout the years:

- Engineering principles and systems:
- Engineering and society, the environment and sustainable development;
- Engineering processes and technology;
- Design and systems engineering.

Values/Attitudes

- Enjoy the engineering design process;
- · Recognise engineering as an exciting, interesting, creative and diverse career;
- Appreciate and be committed to the ethical standards of professional engineering;
- Appreciate that learning, including learning to be a professional engineer, is a life-long process;
- · Appreciate other cultures and customs;
- · Learn about themselves as learners and apply a developing repertoire of learning techniques to the solution of engineering design problems; and
- · Appreciate the responsibilities of engineers in relation to the environment and sustainable development.

COURSE STRUCTURE

To qualify for the Bachelor of Engineering Science degree, a student must complete the specified units and structural requirements of the course and obtain 360 credit points (refer to the charts outlining the course structure).

Bachelor of Engineering Science (Civil Engineering)

Course Structure

Year 1		
unit	Semester 1	credit
code		points
EK501	Engineering Design & Drafting	15
EK565	Fundamentals of Engineering (Statics)	15
EK570	Fundamentals of Engineering (Materials)	15
	And	
EK511	Fundamentals of Engineering (Calculus & Physics)	15
	Or	
	Elective from recommended list only	15
	Semester 2	
EK566	Fundamentals of Engineering (Dynamics)	15
EK580	Fundamentals of Engineering (Electricity & Magnetism)	15
EK590	Fundamentals of Engineering (Applied Mathematics 1)	15
EK502	Engineering Computing	15

Year 2		
unit	Semester 1	credit
code		points
EK680	Fundamentals of Engineering	15
	(Applied Mathematics 2)	
EK 690	Fundamentals of Engineering	15
	(Applied Mathematics 2)	
SX511	Earth Science	15
	Elective from recommended	15
	list only	
	Semester 2	
EK691	Fundamentals of Fluid	
	Mechanics	15
EK635	Engineering Surveying	
		15
EK636	Introduction to Infrastructure	15
	Engineering	
	Elective from recommended list only	15

rears		
unit	Semester 1	credit
code		points
EK752	Structural Design	15
EK744	Water & Drainage	15
	Infrastructure	
EK781	Geomechanics	15
EK791	Design Project 1	15
	Or	
	Elective from recommended	15
	list only	
	Semester 2	
EK841	Waste & Wastewater	15
	Infrastructure	
EK742	Transport Infrastructure	15
EK845	Urban Design	15
EK792	Design Project 2	15
	Or	
	Elective from recommended	15
	list only	

Approved Electives

CP514 Programming 1, SE622 Environmental Ethics & Philosophy, SE522 Environmental Management, EK670 Occupational Health & Safety, SE672 Information Geographical Systems, BA506 Accounting & Business Decisi
Management Principles, EK722
Management & Finance, SE491 Decisions, JN501 Engineering Catchments Management, SX628 Hydrology.

Bachelor of Engineering Science (Mechanical/Electrical Engineering)

Course Structure

Year 1

i c ai i		
unit	Semester 1	credit
code		points
EK501	Engineering Design & Drafting	15
EK565	Fundamentals of Engineering (Statics)	15
EK570	Fundamentals of Engineering (Materials)	15
	And	
EK511	Fundamentals of Engineering (Calculus & Physics)	15
	Or	
	Elective from recommended list only	15
	Semester 2	
EK566	Fundamentals of Engineering (Dynamics)	15
EK580	Fundamentals of Engineering (Electricity & Magnetism)	15
EK590	Fundamentals of Engineering (Applied Mathematics 1)	15
EK502	Engineering Computing	15

Voor 2

i cai Z		
unit	Semester 1	credit
code		points
EK680	Fundamentals of Engineering (Applied Mathematics 2)	15
	\ 11	
EK 690	Fundamentals of Engineering (Applied Mathematics 2)	15
EK671	Electrical Circuits & Systems	15
EK672	Engineering Thermodynamics	15
	Semester 2	
EK691	Fundamentals of Fluid	
	Mechanics	15
EK673	Engineering Design & CAD	15
EK674	Heat Transfer	15
EK640	Theory of Machines & Drives	15

Year 3

i eai 3		
unit	Semester 1	credit
code		points
EK645	Analysis of Electrical	15
	Machines & Drives	
EK701	Numerical Methods for	15
	Engineers	
EK733	Analysis of Dynamic Systems	15
	1	
EK791	Design Project 1	15
	Or	
	Elective from recommended	15
	list only	
	Semester 2	
EK761	Fluid Dynamics	15
EK734	Analysis of Dynamic Systems	15
	2	
EK762	Instrumentation &	15
	Experimental Methods	
EK792	Design Project 2	15
	Or	
	Elective from recommended	15
	list only	

Approved Electives

CP514 Programming 1, EK670 Occupational Health & Safety, BA506 Accounting & Business Decisions, JN501 Management Principles, EK722 Engineering Management & Finance, CP627 Programming 2, CP728 Advanced Programming. Three elective sequence: SF621 Food processing systems, SF622 Food processing systems 2, SF721 Food processing systems 3.

Bachelor of Engineering Science (Mining Engineering)

Course Structure

Year 1		
unit	Semester 1	credit
code		points
EK501	Engineering Design & Drafting	15
EK565	Fundamentals of Engineering (Statics)	15
EK570	Fundamentals of Engineering	
LINOTO	(Materials)	15
	And	
EK511	Fundamentals of Engineering	15
	(Calculus & Physics)	
	Or	
	Elective from recommended	15
	list only	
	Semester 2	
EK566	Fundamentals of Engineering	15
	(Dynamics)	
EK580	Fundamentals of Engineering	15
	(Electricity & Magnetism)	
EK590	Fundamentals of Engineering	15
	(Applied Mathematics 1)	
EK502	Engineering Computing	15

Year 2		
unit	Semester 1	credit
code		points
EK680	Fundamentals of Engineering	15
	(Applied Mathematics 2)	
EK 690	Fundamentals of Engineering	15
	(Applied Mathematics 2)	
SX511	Earth Science	15
EK672	Engineering Thermodynamics	15
	Semester 2	
EK691	Fundamentals of Fluid	
	Mechanics	15
EK635	Engineering Surveying	15
EK676	Mining Technology	15
SX627	Economic Geology	15

i cui o		
unit	Semester 1	credit
code		points
EK783	Underground Production	15
	Systems	
EK784	Surface Mining Operations	15
EK881	Rock & Soil Mechanics	15
EK791	Design Project 1	15
	Or	
EK753	Computer Applications in	15
	Mining	
	Semester 2	
EK883	Mine Ventilation	15
EK884	Mine Power & Services	15
EK882	Mineral Processing	15
EK792	Design Project 2	15
	Or	
EK885	Ore Deposit Evaluation	15

Approved Electives:

CP514 Programming 1, SE622 Environmental Ethics & Philosophy, SE522 Environmental Management, EK670 Occupational Health & Safety, SE672 Geographical Information Systems, BA506 Accounting & Business Management Principles, Business Decisions, JN501 EK722 Engineering Management & Finance.

PROFESSIONAL RECOGNITION

The integrated Bachelor of Engineering course is accredited by the Institution of Engineers, Australia (IEAust), and the Bachelor of Engineering Mining Engineering Major course is accredited by the Australian Institute of Mining and Metallurgy (AusIMM).

Bachelor of Engineering Science(*)/Bachelor of Computing(2002)

* (Civil Engineering) OR * (Mechanical / Electrical Engineering)

COURSE COORDINATOR

Dr Michael Tuck (Engineering) Dr Phil Smith (Computing)

ADMISSION REQUIREMENTS

Applicants must satisfy the admission requirements of both courses and require the approval of the course coordinator of each course.

CREDIT POINTS

540 Engineering 300; Computing 240

DURATION

4 years full-time or part-time equivalent

MODE

Semester (day)

COURSE OVERVIEW

The Bachelor of Engineering Science course is an integrated design-oriented course which aims at producing creative, technically competent professional engineering graduates who have knowledge of the social, environmental, economic and organisational aspects of their work.

The combined degrees provide a competitive edge for graduates wishing to maximise their career prospects and position themselves for future interdisciplinary career paths.

There is an increasing trend for Universities to offer combined degrees, and there is an unmet demand from prospective students for such programs. The combined degree programs offered by the School of Engineering are aimed at attracting high quality students who have a high expectation of completing both degrees.

Students graduating with the combined degrees Bachelor of Engineering Science/Bachelor of Computing receive two degree testamurs - one for each degree.

Computers and computing systems are becoming more and more integrated into the daily lives of people, and particularly into the Engineering and corporate world. In many industries it is expected that Engineers will have a high level of understanding of, and skills in, computing.

The demand for graduates with these high levels of computing skills is increasing continually, and an Engineering graduate with these skills will have a competitive advantage in the market place compared to those with single discipline degrees. In particular, the field of information technology requires both engineering and computing skills.

COURSE OBJECTIVES

The objectives of this combined degrees course must be considered in the context of each of the individual degrees. The objectives of each of the individual degree programs should be consulted.

COURSE STRUCTURE

To qualify for the Bachelor of Engineering Science/ Bachelor of Computing degrees, a student must complete the specified units and structural requirements of the Engineering course as specified below, plus the additional required units for the Bachelor of Computing course.

Bachelor of Engineering Science (Civil Engineering)/Bachelor of Computing

Course Structure

Year 1		
unit	Semester 1	credit
code		points
EK501	Engineering Design & Drafting	15
EK565	Fundamentals of Engineering (Statics)	15
EK570	Fundamentals of Engineering	
	(Materials)	15
	And Computing Unit/s	
CP510	Intro to Operating Systems	15
CP514	Programming 1	15
	Semester 2	
EK566	Fundamentals of Engineering (Dynamics)	15
EK580	Fundamentals of Engineering (Electricity & Magnetism)	15
EK590	Fundamentals of Engineering	15
	(Applied Mathematics 1)	
	And Computing Unit/s	
CP627	Programming 2	15

Year 2		
unit	Semester 1	credit
code		points
EK680	Fundamentals of Engineering	15
	(Applied Mathematics 2)	
EK 690	Fundamentals of Engineering	15
	(Applied Mathematics 2)	
SX511	Earth Science	15
	And Computing Unit/s	
CP611	Database Management	15
	Systems	
CE	Computing Elective	15
	Semester 2	
EK691	Fundamentals of Fluid	
	Mechanics	15
EK635	Engineering Surveying	
		15
EK636	Introduction to Infrastructure	15
	Engineering	
	And Computing Unit/s	
CP582	Network Protocols & Services	15

Year 3		
unit	Semester 1	credit
code		points
EK752	Structural Design	15
EK781	Geomechanics	15
	And Computing Unit/s	
CP613	Software Engineering 1	15
CP685	Network Operating Systems	15
	Semester 2	
EK742	Transport Infrastructure	15
EK845	Urban Design	15
	And Computing Unit/s	
CP622	Software Engineering 2	15
CP728	Advanced Programming	15

Year 4		
unit	Semester 1	credit
code		points
EE	Engineering Directed Elective	15
EK744	Water & Drainage	15
	Infrastructure	
	And Computing Unit/s	
CP703	Systems Programming	15
CE	Computing Elective	15
CE	Computing Elective	15
	Semester 2	
EK841	Waste & Waste Water	15
	Infrastructure	
EE	Engineering Directed Elective	15
	And Computing Unit/s	
CP704	Professional Development	15
CE	Computing Elective	15
CE	Computing Elective	15

Bachelor of Engineering Science (Mechanical/Electrical Engineering)/Bachelor of Computing

Course Structure

Year 1

Unit code	Semester 1	credit points
EK501	Engineering Design & Drafting	15
EK565	Fundamentals of Engineering	15
LINGOS	(Statics)	13
EK570	Fundamentals of Engineering	
	(Materials)	15
	And Computing Unit/s	
CP510	Intro to Operating Systems	15
CP514	Programming 1	15
	Semester 2	
EK566	Fundamentals of Engineering	15
	(Dynamics)	
EK580	Fundamentals of Engineering	15
	(Electricity & Magnetism)	
EK590	Fundamentals of Engineering	15
	(Applied Mathematics 1)	
	And Computing Unit/s	
CP627	Programming 2	15

Year 2	•	
unit	Semester 1	credit
code		points
EK680	Fundamentals of Engineering	15
	(Applied Mathematics 2)	
EK 690	Fundamentals of Engineering	15
	(Applied Mathematics 2)	
EK672	Engineering Thermodynamics	15
	And Computing Unit/s	•
CP611	Database Management	15
	Systems	
CE	Computing Elective	15
	Semester 2	
EK691	Fundamentals of Fluid	
	Mechanics	15
EK674	Heat Transfer	15
EK640	Theory of Machines & Drives	15
	And Computing Unit/s	
CP582	Network Protocols & Services	15

Year 3

i cui o		
unit	Semester 1	credit
code		points
EK701	Numerical Methods for	15
	Engineers	
EK671	Electrical Circuits & Systems	15
	And Computing Unit/s	
CP613	Software Engineering 1	15
CP685	Network Operating Systems	15

	Semester 2	
EK761	Fluid Dynamics	15
EK673	Engineering Design & CAD	15
	And Computing Unit/s	
CP622	Software Engineering 2	15
CP728	Advanced Programming	15

Year 4

unit	Semester 1	credit
code		points
EK645	Analysis of Electrical	15
	Machines & Drives	
EK733	Analysis of Dynamic Systems	15
	1	
	And Computing Unit/s	
CP703	Systems Programming	15
CE	Computing Elective	15
CE	Computing Elective	15
	Semester 2	
EK734	Analysis of Dynamic Systems	15
	2	
EK762	Instrumentation &	15
	Experimental Methods	
	And Computing Unit/s	
CP704	Professional Development	15
CE	Computing Elective	15
CE	Computing Elective	15

PROFESSIONAL RECOGNITION

Graduates will be eligible for admission to the Institution of Engineers Australia and the Australian Computer Society. With a suitable choice of computing units, students may also sit for the Novell Certified Network Administrator, and Certified Network Engineer examinations.

Bachelor of Engineering (2001)

No intake beyond 2001

COURSE COORDINATOR

Dr Michael Tuck

ADMISSION REQUIREMENTS

Applicants must have satisfactorily completed VCE or equivalent. Specific requirements for the course include prerequisite Units 1 and 2 Mathematics (any), and Units 3 and 4 Mathematical Methods.

Applicants who have successfully completed Specialist Mathematics will be deemed to have a Equivalent National Tertiary Entrance Rank (ENTER) of 5 percentage points higher.

All Year 12/VCE applicants must apply through VTAC. Non-Year 12 applicants applying through VTAC are encouraged to complete Form SI. Alternatively Non-Year 12 applicants can apply direct to the University through the Tertiary Access Scheme. Refer to the Admissions, Policy and Procedures section in this Handbook.

CREDIT POINTS

480

DURATION

4 years full-time or part-time equivalent

MODE

Semester (day)

COURSE OVERVIEW

The Bachelor of Engineering course is an integrated design-oriented course which aims to produce professional technically-competent creative, engineering graduates who have knowledge of the

social, environmental, economic and organisational aspects of their work.

The applied design theme has a distinctive industry focus targeting the mineral and food industries, as well as service-oriented private professional consultancy. The main characteristic of the curriculum is applied design in a systems context, which is encompassed by the three study majors. Students select from one of the following three Mechanical/Electrical elective sequences: Engineering, Civil Engineering, Engineering.

COURSE OBJECTIVES

The course is designed to enable students to:

Knowledge

- Explain the scientific, technical and mathematical concepts that are fundamental to engineering;
- Explain fundamental engineering concepts at an advanced level in selected industry areas;
- Describe and explain the life cycle of engineering products and services;
- Describe and explain the engineering design process.
- · Describe and explain technical systems in a wide range of engineering applications;
- Describe and explain quality management and business processes in engineering contexts;
- · Describe and explain the use and transformation of materials in engineering processes; and
- Describe and explain the social impact of technology and its applications.

Skills

- Solve engineering design problems;
- Apply appropriate technology, including information technology, to solving engineering problems:
- Read and make engineering drawings, using a range of methods;
- · Apply the visualisation of three-dimensional space to the solution of engineering design problems;
- · Work independently and in teams; communicate effectively - orally, graphically and in writing; thinking creatively;
- · Apply project management techniques;
- Maintain and supervise a quality assurance program: and
- Perform research and development tasks.

Values/Attitudes

- Enjoy the engineering design process;
- · Recognise engineering as an exciting, interesting, creative and diverse career;
- Appreciate and be committed to the ethical standards of professional engineering;
- Appreciate that learning, including learning to be a professional engineer, is a life-long process;
- · Appreciate other cultures and customs;
- · Learn about themselves as learners and apply a developing repertoire of learning techniques to the solution of engineering design problems; and
- · Appreciate the responsibilities of engineers in relation to the environment and sustainable development.

COURSE STRUCTURE

To qualify for the Bachelor of Engineering degree, a student must complete the specified units and structural requirements of the course and obtain 480 credit points (refer to the charts outlining the course structure). The course offers a wide range of engineering and non-engineering electives. Each student may also select one elective sequence of units from a non-engineering discipline eg. Arts,

Behavioural & Social Sciences & Humanities. Human Movement and Sport Sciences, and VIOSH (of up to 30 credit points) in the second and third years of the course.

Students may also propose their own sequence of electives of up to 30 credit points, provided they are able to justify this selection with respect to the course structure and desired learning outcomes.

Bachelor of Engineering (2001)

Course Structure

rear 1		
unit	Semester 1	credit
code		points
EK550	Introduction to Design and	15
	Practice	
EK565	Fundamentals of Engineering	15
	(Statics)	
EK570	Fundamentals of Engineering	
	(Materials)	15
	And	
EK511	Fundamentals of Engineering	15
	(Calculus & Physics)	
	Or	
CP514	Programming 1 (directed	15
	elective)	
	Semester 2	
EK566	Fundamentals of Engineering	15
	(Dynamics)	
EK580	Fundamentals of Engineering	15
	(Electricity & Magnetism)	
EK590	Fundamentals of Engineering	15
	(Applied Mathematics 1)	
	And	
CP514	Programming 1 (directed	15
	elective)	
	Or	
CP627	Programming 2 (directed	15
	elective)	
	Or	
CP627	Advanced Programming	15
	(directed elective)	

Υ	ear	2	

. ou		
unit	Semester 1	credit
code		points
EK670	Occupational Health & Safety	15
EK680	Fundamentals of Engineering	15
	(Applied Mathematics 2)	
EK 690	Fundamentals of Engineering	15
	(Applied Mathematics 2)	
	And either:	
	Mechanical/Electrical	
EK640	Theory of Machines & Drives	15
	Or	
	Civil/Mining	
EK635	Engineering Surveying	15
	Semester 2	
EK650	Principles of Design &	
	Practice	15
EK660	Fundamentals of Engineering	
	(Fluids & Thermofluids)	15
EK890	Professional Practice	0
	*Approved Elective	15
	And either:	
	Mechanical/Electrical	
EK645	Analysis of Machines & Drives	15
	Or	
	Civil/Mining	
EK636	Introduction to Infrastructure	15
	Engineering	

*Approved Electives

Mining/Civil Engineering - SX522 Landscape Evolution

Mechanical/Electrical Engineering CP627 Programming 2; OR CP728 Advanced Programming; OR Approved Science/Computing Unit for standard entry.

٧	2م	r	•

Year 3		
unit	Semester 1	credit
code		points
EK701	Numerical Methods for	15
	Engineers	
	And either:	
	Mechanical/Electrical	
EK750	Engineering Design	15
EK731	Electro Techniques	15
EK733	Analysis of dynamic Systems 1	15
	or Civil:	
EK752	Structural Design	15
EK741	Structural Design & Analysis	15
EK781	Geomechanics	15
	or Mining:	
EK753	Computer Applications in Mining	15
EK781	Geomechanics	15
EK783	Underground Production Systems	15
	Semester 2	
EK722	Engineering Management &	15
E1/754	Finance	4.5
EK751	Technology & Society	15
EK890	Professional Practice	0
	And either:	
	Mechanical/Electrical	
EK732	Thermofluids	15
EK734	Analysis of Dynamic Systems 2	15
	or Civil:	
EK742	Transport Infrastructure	15
EK744	Water & Drainage	15
	Infrastructure	
	or Mining:	
SX627	Economic Geology	15
EK784	Surface Mining Operations	15
Voor 4		

Year 4

	Semester 1	
EK851	Design Project 1	15
	And either:	
	Mechanical/Electrical	
EK831	Machine System Design	15
EK833	Industrial Systems Control 1	15
	And:	
EK837	Industrial Communication &	15
	Networking	
Or:		
EK838	Strength of Materials	15
or Civil:		
EK841	Waste & Waste Water	15
	Infrastructure	
EK843	Infrastructure Design &	15
	Construction	
EK845	Infrastructure Planning &	15
	Management 1	
or Mining		
EK881	Rock Mechanics Applications	15
EK883	Subsurface Environmental	15
	Engineering	
EK885	Ore Deposit Evaluation	15

	Semester 2	
EK852	Design Project 2	30
EK890	Professional Practice	0
	And either:	
	Mechanical/Electrical	
EK834	Industrial Systems Control 2	15
EK835	Machinery Dynamics	15
or Civil:		
EK844	Infrastructure Design &	15
	Construction 2	
EK846	Infrastructure Planning &	15
	Management 2	
or Mining:		
EK882	Mineral Processing	15
EK884	Mine Power & Services	15

PROFESSIONAL RECOGNITION

The integrated Bachelor of Engineering course is accredited by the Institution of Engineers, Australia (IEAust), and the Bachelor of Engineering Mining Engineering Major course is accredited by the Australian Institute of Mining and Metallurgy (AusIMM).

Bachelor of Engineering (Pre-1996)

For information regarding the pre-1996 course, please refer to previous University Handbooks or contact the School of Engineering.

Bachelor of Engineering (1996 - 2000)

For information regarding the pre-1996 course, please refer to previous University Handbooks or contact the School of Engineering.

Bachelor of Engineering/ Bachelor of Commerce (1996 - 2000)

No intake beyond 2000 - refer to 2000 Handbook for Course information.

Bachelor of Engineering/ Bachelor of Computing (2001)

No intake beyond 2001

COURSE COORDINATOR

Dr Michael Tuck (Engineering) Dr Phil Smith (Computing)

ADMISSION REQUIREMENTS

Applicants must satisfy the admission requirements of both courses and require the approval of the course coordinator of each course.

CREDIT POINTS

660 Engineering 360; Computing 240; Other 60

5 years full-time or part-time equivalent

MODE

Semester (day)

COURSE OVERVIEW

The 1996 - 2000 Bachelor of Engineering course is an integrated design-oriented course which aims at producing creative, technically competent professional engineering graduates who have knowledge of the social, environmental, economic and organisational aspects of their work.

In addition, there is a growing expectation that Engineering graduates will have a broad range of non-engineering knowledge. In particular, it is often expected that engineering graduates will have skills in Asian languages, commerce, and computing at advanced levels.

The combined degrees provide a competitive edge for graduates wishing to maximise their career prospects and position themselves for future interdisciplinary career paths.

There is an increasing trend for Universities to offer combined degrees, and there is an unmet demand from prospective students for such programs. The combined degree programs offered by the School of Engineering are aimed at attracting high quality students who have a high expectation of completing both degrees.

Students graduating with the combined degrees Bachelor of Engineering/Bachelor of Computing receive two degree testamurs - one for each degree. Computers and computing systems are becoming more and more integrated into the daily lives of people, and particularly into the Engineering and corporate world. In many industries it is expected that Engineers will have a high level of understanding of, and skills in, computing.

The demand for graduates with these high levels of computing skills is increasing continually, and an Engineering graduate with these skills will have a competitive advantage in the market place compared to those with single discipline degrees. In particular, the field of information technology requires both engineering and computing skills.

COURSE OBJECTIVES

The objectives of this combined degrees course must be considered in the context of each of the individual degrees. The objectives of each of the individual degree programs should be consulted.

COURSE STRUCTURE

To qualify for the Bachelor of Engineering/ Bachelor of Computing degrees, a student must complete the specified units and structural requirements of the Engineering course as specified below, plus the additional required units for the Bachelor of Computing course.

Voor 1

Semester 1	credit	
	points	
Introduction to Design and	15	
Practice		
Fundamentals of Engineering	15	
(Statics)		
Fundamentals of Engineering		
(Materials)	15	
And Computing Unit/s		
Intro to Operating Systems	15	
Programming 1	15	
Semester 2		
Fundamentals of Engineering	15	
(Dynamics)		
Fundamentals of Engineering	15	
(Electricity & Magnetism)		
Fundamentals of Engineering	15	
(Applied Mathematics 1)		
And Computing Unit/s		
Programming 2	15	
	Introduction to Design and Practice Fundamentals of Engineering (Statics) Fundamentals of Engineering (Materials) And Computing Unit/s Intro to Operating Systems Programming 1 Semester 2 Fundamentals of Engineering (Dynamics) Fundamentals of Engineering (Electricity & Magnetism) Fundamentals of Engineering (Applied Mathematics 1) And Computing Unit/s	

Year 2

I Cai Z		
unit	Semester 1	credit
code		points
EK680	Fundamentals of Engineering	15
	(Applied Mathematics 2)	
EK 690	Fundamentals of Engineering	15
	(Applied Mathematics 2)	
	And either:	
	Mechanical/Electrical	
EK640	Theory of Machines & Drives	15
	Or	
	Civil/Mining	
EK635	Engineering Surveying	15
CP611	Database Management	15
	Systems	
CE	Computing Elective	15
	Semester 2	
EK650	Principles of Design &	
	Practice	15
EK660	Fundamentals of Engineering	
	(Fluids & Thermofluids)	15
	And either:	
	Mechanical/Electrical	
EK645	Analysis of Machines & Drives	15
	Or	
Civil/Mining		
EK636	Introduction to Infrastructure	15
	Engineering	
	And Computing Unit/s	
CP582	Network Protocols & Services	15

Voor 3

Year 3			
unit	Semester 1	credit	
code		points	
EK701	Numerical Methods for	15	
	Engineers		
	And either:	•	
	Mechanical/Electrical		
EK731	Electro Techniques	15	
EK733	Analysis of dynamic Systems	15	
	1		
	or Civil:		
EK741	Structural Design & Analysis	15	
EK781	Geomechanics	15	
	or Mining:		
EK781	Geomechanics	15	
EK783	Underground Production	15	
	Systems		
	And Computing Unit/s		
CP613	Software Engineering 1	15	
CE	Computing Elective	15	
	Semester 2		
EK722	Engineering Management &	15	
	Finance		
EK890	Professional Practice	0	
	And either:		
	Mechanical/Electrical		
EK732	Thermofluids	15	
EK734	Analysis of Dynamic Systems	15	
	2		
	Or Civil:		
EK742	Transport Infrastructure	15	
EK744	Water & Drainage	15	
	Infrastructure		
	Or Mining:		
SX627	Economic Geology	15	
EK784	Surface Mining Operations	15	
	And Computing Unit/s	T	
CP622	Software Engineering 2	15	

Year	4
------	---

Year 4		
unit	Semester 1	credit
code		points
	One Unit from:	
EK750	Engineering Design 1	15
EK752	Structural Design	15
EK753	Computer Applications in	
	Mining	
	And two Units from either:	
	Mechanical/Electrical	
EK831	Machine System Design	15
EK833	Industrial Systems Control 1	15
	And:	
EK837	Industrial Communication &	15
	Networking	
	Or:	
EK838	Strength of Materials	15
2,1000	Or Civil:	.0
EK841	Waste & Waste Water	15
LIXOTI	Infrastructure	13
EK843	Infrastructure Design &	15
LIX043	Construction	13
EK845	Infrastructure Planning &	15
LIXO43	Management 1	13
	Or Mining:	
EK881	Rock Mechanics Applications	15
EK883	Subsurface Environmental	15
LKOOS	Engineering	13
EK885	Ore Deposit Evaluation	15
LKOOS	And Computing Unit/s	13
CP685	Network Operating Systems	15
CE	Computing Elective	15
CE	Semester 2	13
E1/754		45
EK751	Technology & Society	15
EK890	Professional Practice	0
	And one Unit from either:	
F1/004	Mechanical/Electrical	
EK834	Industrial Systems Control 2	15
EK835	Machinery Dynamics	15
=1/0.4	Or Civil:	
EK844	Infrastructure Design &	15
	Construction 2	
EK846	Infrastructure Planning &	15
	Management 2	
	Or Mining:	
EK882	Mineral Processing	15
EK884	Mine Power & Services	15
	And Computing Unit/s	1
CP728	Advanced Programming	15
CE	Computing Elective	15

rear 5			
unit	Semester 1	credit	
code		points	
EK851	Design Project 1	15	
EK752	Structural Design	15	
EK753	Comp. Applications in Mining		
	And one Unit from either:		
	Mechanical/Electrical		
EK831	Machine System Design	15	
EK833	Industrial Systems Control 1	15	
	And:		
EK837	Industrial Communication &	15	
	Networking		
	Or:		
EK838	Strength of Materials	15	
	Or Civil:		
EK841	Waste & Waste Water	15	
	Infrastructure		
EK843	Infrastructure Design &	15	
	Construction		

EK845	Infrastructure Planning &	15	
211010	Management 1		
	Or Mining:		
EK881	Rock Mechanics Applications	15	
EK883	Subsurface Environmental	15	
	Engineering		
EK885	Ore Deposit Evaluation	15	
	And Computing Unit/s		
CP703	Systems Programming	15	
CE	Computing Elective	15	
	Semester 2		
EK852	Design Project 2	30	
EK890	Professional Practice	0	
	And one Unit from either:		
	Mechanical/Electrical		
EK834	Industrial Systems Control 2	15	
EK835	Machinery Dynamics	15	
	Or Civil:		
EK844	Infrastructure Design &	15	
	Construction 2		
EK846	Infrastructure Planning &	15	
	Management 2		
	Or Mining:		
EK882	Mineral Processing	15	
EK884	Mine Power & Services	15	
And Computing Unit/s			
CP704	Professional Development	15	

PROFESSIONAL RECOGNITION

Graduates will be eligible for admission to the Institution of Engineers Australia and the Australian Computer Society. With a suitable choice of computing units, students may also sit for the Novell Certified Network Administrator, and Certified Network Engineer examinations.

Bachelor of Engineering/ **Bachelor of Management** (1999)

No intake beyond 1999 - refer to 2000 Handbook for Course information.

Graduate Certificate of Brewing

COURSE COORDINATOR

Mr Robert Greig

ADMISSION REQUIREMENTS

Candidates should hold a bachelor degree or a TAFE Diploma, or be able to provide evidence of completion of relevant workplace training. If participants in the course do not possess a formal qualification or have not participated in workplace training it would be expected that they would normally have a minimum of three years malting or brewing experience and provide a referee's report.

CREDIT POINTS

60 credit points

DURATION

The courses have been designed to enable students to complete one unit per semester. Maximum duration of enrolment shall be 4 years, except in special cases where permission to extend this is granted by the School of Science and Engineering Courses Committee.

MODE

All units will be by flexible delivery including on-line access with supplementary posted readings. All students will be required to attend one residential workshop, held once per year, normally in December.

COURSE OVERVIEW

The course is designed to provide students with an in-depth knowledge of the principles and practice of malting and brewing. The Graduate Certificate overviews the whole brewing process. It provides significant detail in the areas of raw materials, wort production, fermentation and analysis, which may be typically required for small scale breweries, suppliers of breweries, and allied industries.

COURSE OBJECTIVES

The objectives of the Graduate Certificate and Graduate Diploma of Brewing are:

- to develop a sound knowledge of core concepts in the malting and brewing industries and the practical application of that knowledge;
- define and describe the raw materials used in the production of beers;
- describe and explain the chemical, technological and mechanical operations occurring during wort production;
- describe and explain the importance of yeast culture management, propagation technology and fermentation during the production of beer and related products;
- define and describe analyses used in the chemical and sensory evaluation of beer; and,
- to provide students with lifelong learning skills such as accessing information, scientific and technical analysis, independent thought and problem solving.

COURSE STRUCTURE

The Graduate Certificate of Brewing is a course consisting of four, 15 credit point units

continuing or rour, to crount point unite		
unit		credit
code		points
SF480	Brewing Raw Materials	15
SE481	The Brewing Process	15
SF482	Yeast and Fermentation	15
SF483	Malt and Beer Quality	15

Graduate Diploma of Brewing

COURSE COORDINATOR

Mr Robert Greig

ADMISSION REQUIREMENTS

As for Graduate Certificate of Brewing

CREDIT POINTS

120 credit points

The courses have been designed to enable students to complete one unit per semester. Maximum duration of enrolment shall be 4 years, except in special cases where permission to extend this is granted by the School of Science and Engineering **Courses Committee**

MODE

As for Graduate Certificate of Brewing

COURSE OVERVIEW

In addition to the above Course Overview for the Graduate Certificate of Brewing, the Graduate Diploma includes more detailed information in areas which are more relevant to the large scale brewing industry such as more diverse types of packaging, quality assurance and quality management, and detailed engineering principles of downstream processing.

COURSE OBJECTIVES

As for Graduate Certificate of Brewing (above) and in addition, the Graduate Diploma of Brewing will provide significantly more detail to enable student to:

- describe and explain the principles of engineering, instrumentation and process control in the malting and brewing industries;
- describe the theory and practice of postfermentation unit operations;
- describe the processes involved in the packaging of beer in a variety of containers eg kegs, cans, bottles.

COURSE STRUCTURE

Upon successful completion of the Graduate Certificate, the student can elect to articulate into the Graduate Diploma that will consist of two, 30 credit point professional units.

unit		credit
code		points
	Graduate Certificate of	60
	Brewing PLUS	
SF484	Packaging and Quality	30
SF485	Engineering and Downstream	30
	Processing	

Graduate Certificate of Food Science

COURSE COORDINATOR

Mr Robert Greig

ADMISSION REQUIREMENTS

three-year undergraduate degree or TAFE Associate Diploma plus experience, or an approved industry training program plus experience.

CREDIT POINTS

60 credit points

DURATION

6 months full-time or part-time equivalent

MODE

Block

COURSE OVERVIEW

This is an integrated course of study units for further education and skills enhancement in the area of Food Science and Technology. The content and delivery is specifically designed for people working in the food processing industry and the important disciplines of food science, food safety, quality management and food processing are covered in the curriculum.

COURSE OBJECTIVES

This course is designed to enable students to:

- Define and describe the interrelationships between Food Technology and Agricultural Science;
- Define and describe the interrelationships between natural and social systems within the Food Technology and Agricultural Science fields;
- · Define and apply an integrated, problem-solving approach to operations in an industry setting;
- Apply systems-thinking techniques and problemsolving techniques; and
- Apply Good Manufacturing Practice across the industry.

COURSE STRUCTURE

COUNCE CHICOTORE		
unit		credit
code		points
SF433	Food Science	15
SE431	Food Processing Systems	15
SF432	Food Safety	15
SF434	Food Quality Management	15

PROFESSIONAL RECOGNITION

Graduates, who also have suitable industry experience, will be eligible for membership of the Australian Institute of Food Science and Technology.

Graduate Diploma of Land Rehabilitation

COURSE COORDINATOR

Mr Michael Wilson

ADMISSION REQUIREMENTS

A three-year undergraduate degree in a relevant field, eg. forestry, applied science, biology, environmental science, agricultural science, earth sciences, geology, or a lesser qualification with considerable relevant experience.

CREDIT POINTS

120

DURATION

1-3 years

Block (day)

COURSE OVERVIEW

An integrated course of study units in environmental sciences and extension techniques designed to produce a graduate who is able to deal effectively with a broad range of land degradation issues.

COURSE OBJECTIVES

The course objectives are defined as producing a graduate who:

- · Has an increased awareness and knowledge of the factors, principals and practices that influence the degradation of land:
- Can appraise and evaluate the methods and mechanisms that enhance land rehabilitation;
- · Can make decisions on land rehabilitation that take into account the criteria and constraints of land management;
- Can efficiently communicate the concepts and processes that are fundamental to land management and rehabilitation:
- · Can apply the knowledge and comprehension of land rehabilitation to provide objective, practical planning advice to land managers.

COLIDGE STRUCTURE

COOKSE STRUCTURE			
Unit		credit	
code		points	
SE662	Pest Plants and Animals	15	
SE670	Soil Science	15	
SE672	Geographic Information	15	
	Systems		
SE762	Soil Conservation	15	
SE490	Vegetation Management	15	
SE491	Catchment Management	15	
SE400	Major Project	30	
SE422	Land Rehabilitation Issues	10	

PROFESSIONAL RECOGNITION

Graduates of this course have readily found employment in land management disciplines. Completion of this course with high level marks can lead to a master's degree by research, subject to approval.

Graduate Diploma in Mining

COURSE COORDINATOR

Dr Michael Tuck

ADMISSION REQUIREMENTS

Relevant degree or diploma or lesser qualification with significant industrial experience.

CREDIT POINTS

DURATION

1 year full-time or 2 years part-time

Block part-time (full-time by special arrangement)

COURSE OVERVIEW

The course is designed for part-time study over a two-year period in the form of four full-time periods on campus of two weeks each, followed by assignments and practical work in the student's place of employment. Persons not wishing or not able to finish the course in minimum time may attend full or half sessions once or twice per year until the required number of units have been completed. Completion in one year of full-time study is possible following consultation with the course coordinator.

Students must complete any eight units from the prescribed list to complete the course.

COURSE OBJECTIVES

The Graduate Diploma of Mining is intended as continuing education for scientists and engineers involved with the mining industry. It is expected to appeal particularly to civil, mechanical, electrical, chemical and construction engineers, geologists, metallurgists, surveyors and other professionals with an interest in mining practice.

COURSE STRUCTURE

The following units will be offered regularly, subject to sufficient class numbers. All units are completely independent and do not have to be taken in any particular order.

unit		credit
code		points
EG401	Mine Power Sup. & Drainage	15
EG402	Production Drilling & Blasting	15
EG403	Tunnelling & Mine Dev't	15
EG404	Undergr'nd Product'n Systems	15
EG405	Materials Handling & Hoisting	15
EG408	Company Economics &	
	Finance	15
EG409	Rock Mechanics Applications	15
EG410	Ore Reserve Estimation	15
EG411	Surface Mining Op's & Equip't	15
EG413	Mine Safety & Environ. Eng	15
EG414	Mine Surveying	15
EG415	Environ. Mngmnt of Mines	15
SG401	Mining and Economic Geology	15
SM401	Mineral Processing	15

PROFESSIONAL RECOGNITION

The course has been accepted in some states as fulfilling all or part of the academic requirements for certain Mine Managers' Certificates. Students interested in this aspect should contact the department in their own state to determine which combination of units is most suitable for their needs.

Master of Engineering Technology

COURSE COORDINATOR

Dr Michael Tuck

ADMISSION REQUIREMENTS

To be eligible for admission to the program, candidates must possess a three-year degree in engineering, science or technology in the same field of study as their proposed specialism. Alternatively candidates must possess a four-year degree in engineering, from a college or university recognised by the National Office of Overseas Skills Recognition (NOOSR) as awarding degrees that are comparable to the education level of an Australian bachelor

CREDIT POINTS

180

DURATION

The course will be one and a half years full-time or part-time equivalent.

MODE

Semester (day), Block Mode

COURSE OVERVIEW

This is a vocationally orientated course that provides students with the knowledge and skills that are necessary to obtain employment as an engineer and to be admitted as a Member with the Institution of Engineers, Australia. The course also serves as a preparation for further graduate studies in technology, business administration and other areas. Specifically the course provides students with advanced studies in a branch of engineering, either civil engineering, electrical engineering, mechanical engineering or mining engineering.

COURSE OBJECTIVES

A student who successfully completes the course should be able to demonstrate:

- basic knowledge and skill in analysis;
- a knowledge of the branch of engineering chosen as their major study of sufficient depth for the student to gain employment as an engineering technologist within their field of specialisation;
- an ability to analyse and propose solutions to technical problems in accordance established practices and procedures;
- a high degree of written and oral communication skills;
- computer literacy;
- a capacity to adapt to changing circumstances and master new techniques:
- an aptitude to undertake further learning and
- a basic understanding of the operation of the industrial and social environments in which they will function;
- eligibility for admission as a Member of the Institution of Engineers Australia; and
- a knowledge of the principal journals and other major information sources relevant to their field of specialisation, and an ability to comprehend and utilise data from these sources.

COURSE STRUCTURE

To qualify for the Master of Engineering Science degree a student must complete the specified units and structural requirements of the Engineering course as specified overleaf.

Civil Engineering

Course Structure

i ear i		
unit	Semester 1	credit
code		points
SX733	Engineering Geology	15
EK741	Structural Design and	15
	Analysis	
EK871	Research Project 1	15
	Elective	15
	Semester 2	
EK846	Urban and Regional Planning	15
EK844	Infrastructure Design and	15
	Construction	
EK872	Research Project 2	15
	Elective	15

Year 2

i cai z		
unit	Semester 1	credit
code		points
Ek873	Research Project 3	30
	Elective	15
	Flective	15

Elective List

EK 670 Occupational Health and Safety, SX 628 Hydrology, EK 722 Engineering Management and Finance, EK 881 Rock and Soil Mechanics, SE 762 Soil Conservation, BA 401 Accounting and Finance, BE 921 Managing in Complex Environments, BM 401 Marketing, BN 921 Organisations: Behaviour, Structure, Processes, BN 928 Entrepreneurship.

Mechanical Engineering

Course Structure

Year 1		
unit	Semester 1	credit
code		points
EK722	Engineering Mgt and Finance	15
EK831	Machine System Design	15
EK871	Research Project	15
	Elective	15
	Semester 2	
EK875	Vibrations Machine Dynamics	15
EK876	Design of Thermal Systems	15
EK872	Research Project 2	15
	Elective	15

Vear 2

i cai Z		
unit	Semester 1	credit
code		points
EK873	Research Project 3	30
	Elective	15
	Elective	15

Elective List

EK 670 Occupational Health and Safety, EK 877 Refrigeration and Air Conditioning, EK 878 Robotics, CP 728 Advanced programming, BA 401 Accounting and Finance, BE 921 Managing in Complex Environments, BM 401 Marketing, BN 921 Organisations: Behaviour, Structure, Processes, BN 928 Entrepreneurship, EK 879 Renewable Energy, EK 891 Programmable logic controllers, EK 892 turbomachinery, EK 893 microcontrollers.

Three elective sequence: SF 621 Food processing systems 1, SF 622 Food processing systems 2, SF 721 Food processing systems 3.

Mining Engineering Course Structure

i cai i		
unit	Semester 1	credit
code		points
SX733	Engineering Geology	15
EK821	Mine Planning and Scheduling	15
EK871	Research Project	15
	Elective	15
Semester 2		
EK822	Advanced Mine Ventilation	15
EK823	Advanced Rock Mechanics	15
EK872	Research Project 2	15
	Elective	15

Year 2

unit code	Semester 1	credit points
EK873	Research Project 3	30
	Elective	15
	Elective	15

Elective List

EK 670 Occupational Health and Safety, EK 753 Computer Applications in Mining, EK 824 Advanced rock breakage, EK 885 Ore deposit evaluation, EG 408 Company Economics and Finance, EK 825 Mine Environmental Engineering, EG 413 Mine Safety and Environmental Engineering, BA 401 Accounting and Finance, BE 921 Managing in Complex Environments, BM 401 Marketing, BN 921 Organisations: Behaviour, Structure, Processes, BN 928 Entrepreneurship.

PROFESSIONAL RECOGNITION

The Master of Engineering Technology course is accredited by the Institution of Engineers, Australia (IEAust).

Higher Degrees by Research

- Master of Applied Science (MAppSc)
- Master of Engineering Science (MEngSc)

This degree is awarded on the basis of a thesis demonstrating "command of the knowledge and skills pertinent to the area of investigation as well as a critical appreciation and understanding of the relationship of his or her own work to that of others". The prerequisite for enrolment is an Honours degree at at least second-class honours level (or equivalent qualifications and/or experience). There is provision for transfer from master's to PhD candidature, with credit for the period spent as a master's candidate. Enrolment can be on a full-time or part-time basis. A student works during candidature under the guidance of a principal supervisor appointed by the Research Higher Degrees Committee on recommendation of the School.

(Requirements for Masters degrees are currently being re-drafted. Contact the School for further

Doctor of Philosophy (PhD)

This degree is awarded on the basis of a thesis making a substantial contribution to knowledge and demonstrating an understanding of the relationship of the investigations undertaken to a wider field of knowledge. Whereas in most cases the thesis will be a text reporting research undertaken by the candidate, the regulations also allow for a thesis to be creative work supported by an exegesis. minimum requirement for enrolment is an Honours

degree at first class honours level (or equivalent qualifications and/or experience).

Enrolment can be on a full-time or part-time basis. While the expectation is that a PhD degree will be completed within 3 to 4 years full-time (or the equivalent in part-time study), it is possible to meet degree requirements over a shorter or longer period of enrolment. A student works during candidature under the guidance of a principal supervisor appointed by the Research and Higher Degrees Committee on the recommendation of the School.

Areas of research strength in which supervision is available in the School of Science and Engineering include:

- Environmental Management;
- Food Science and Technology;
- Metallurgy;
- Geology;
- Fermentation Technology;
- Energy and Resources;
- Dynamics and Systems;
- Visual Data and Communications;
- Hazard Management; and
- Occupational Health and Safety in the Mining Industry.

Doctor of Engineering Science (D.Eng Sci)

The Doctor of Engineering Science is a Higher Degree that combines research and professional interests. The program involves completion of a thematically linked Field/Professional Practice based research projects, completion of advanced study units and preparation of a dissertation and publication portfolio relating to the work undertaken. A supervisory panel controls the program.

A Doctor of Engineering Science degree enables a graduate to undertake high level research in a wide range of employment areas. The minimum requirement for enrolment is a bachelors degree in the relevant discipline (or equivalent qualifications and/or experience) and a minimum of 5 years work experience in Engineering or a similar area.

Enrolment can be on a full-time or part-time basis. While the expectation is that a D.Eng Sci degree will be completed within 3 to 4 years full-time (or the equivalent in part-time study), it is possible to meet degree requirements over a shorter or longer period of enrolment.

Further Information

The Higher Degree Regulations for the University of Ballarat provide information about prerequisites for enrolment, procedures during candidature, and the examination process. A copy of these Regulations, as well as application forms for candidature and scholarships, may be obtained from the Office of Research, University of Ballarat, telephone (03) 5327 9608. Information about research topics and supervision may be obtained from the School Research, Higher Degrees and Ethics Coordinator, Associate Professor Stephen Hall, telephone (03) 5327 9354, facsimile (03) 5327 9240, or the Head of School, Professor Martin Westbrooke, telephone (03) 5327 9213, facsimile (03) 5327 9240.

VIOSH Australia Courses

Certificate IV in **Occupational Health & Safety**

COURSE COORDINATOR

Ms Chrissie Hyman

ADMISSION REQUIREMENTS

• Nil, but it is recommended that participants be at least 20 years of age and have at least two years work experience.

CREDIT POINTS

Not Applicable

DURATION

12 months (500 student learning hours) part time

Block (two weeks in January or July)

COURSE OVERVIEW

The course is designed for busy people who have experience in OHS but who have not had the opportunity to undertake a tertiary course.

The course is conducted twice a year. It consists of two weeks of on-campus learning followed by approximately 420 student hours of off-campus work. During the off-campus period participants complete a series of assignments while undertaking their normal work. This is an effective way of gaining a high quality, well regarded qualification in OHS.

COURSE OBJECTIVES

The course is designed to enable students to:

- Demonstrate a sound knowledge of the legislative and regulatory framework relating to occupational health and safety;
- · Describe and implement appropriate strategies for the management of occupational health and safety within organisations:
- Communicate effectively both orally and in writing:
- Describe and explain appropriate means of predicting, identifying, assessing and controlling occupational hazards;
- Demonstrate a sound knowledge of common hazards in the workplace and the means of predicting, identifying, assessing and controlling them:
- Access and use information resources occupational health and safety.

COURSE STRUCTURE

Theme A	Occupational Health and Safety Management	
Theme B	Control of Hazards	

Graduate Certificate in Occupational Hazard Management

COURSE COORDINATOR

Mr David Borys

ADMISSION REQUIREMENTS

- · A first degree, with appropriate major studies; or
- A diploma or equivalent award with appropriate major studies and at least two years relevant work experience; or
- At least three years health, safety and/or environment management experience.

CREDIT POINTS

DURATION

1 year part-time

Block (three weeks in January & July)

COURSE OVERVIEW

The course is designed as a stepping stone to completion of the Graduate Diploma in Occupational Hazard Management. It is also a valuable qualification in its own right. The course is designed for people who have managerial responsibilities for Health, Safety and Environment (HSE) in their workplace, or for those who aspire to such positions.

The course provides a robust, integrated and multidisciplinary framework on which future knowledge can be built. The course produces selfdirected learners who have the academic framework and skills to tackle new issues in HSE as they arise.

COURSE OBJECTIVES

The course is designed to enable students to:

Knowledge

- · Describe and explain appropriate means of predicting, identifying, assessing and controlling occupational hazards;
- Describe and explain appropriate means of quantifying, predicting, estimating and controlling occupational risk;
- · Explain the accident process;
- Describe and explain appropriate strategies for the integrated, strategic management of occupational health and safety within organisations:
- · Describe and explain effective processes for achieving organisational learning in relation to occupational hazard management; and
- Describe and reflect on learning strategies and their approaches to learning.

Skills

- Construct credible arguments for the inclusion of effective occupational hazard management in corporate objectives;
- Initiate, implement and review comprehensive occupational hazard management programs;
- Locate, retrieve, evaluate, manage, process and use information relating to occupational hazard management;
- Predict, define and solve problems arising from the complex connections and interactions in human - machine - environmental systems;
- · Coordinate internal and external resources and agencies involved in occupational management within an organisation;
- Predict likely technical and organisational sources of failure or control strategies;
- Communicate effectively about occupational hazard management with various individuals and groups in a range of settings, for a range of
- Facilitate organisational learning in relation to occupational hazard management;
- Evaluate their learning and apply new learning
- Apply appropriate problem solving techniques; and
- Use appropriate information technology.

Appreciate the importance of occupational hazard management for the well being of all members of workplaces and communities at large;

- · Appreciate the importance of occupational hazard management for the achievement of corporate
- Appreciate the organisational learning necessary for the successful management of occupational
- · Appreciate curiosity, probing questions and continuous learning;
- Appreciate creativity and the power of imagination;
- · Appreciate the need for sensitivity to cultural diversity, and gender issues, in the workplace and the community;
- · Appreciate the social/ethical responsibilities of industry and the people who work in it; and
- · Recognise their own limitations and the need to call on others for assistance/advice where appropriate.

COURSE STRUCTURE

Year 1

unit	Session 1	credit
	Session i	
code		points
EV471	HSE Systems 1 - Introduction	
	and Context	10
BL473	HSE Law	10
EV491	Control of Hazards 1 -	
	Accident Analysis Models	10
	Session 2	
EV472	HSE Systems 2 - Prevention	10
BN439	Management Concepts and	
	Leadership	10
EV492	Control of Hazards 2 - Risk	
	Assessment and Control	
	Techniques	10

ARTICULATION

The Graduate Certificate OHM is equivalent to the first year of the Graduate Diploma OHM.

PROFESSIONAL RECOGNITION

Membership of:

- · Safety Institute of Australia
- · Australian Institute of Risk Management.

Graduate Diploma in Occupational Hazard Management

COURSE COORDINATOR

Mr David Borys

ADMISSION REQUIREMENTS

- · A first degree, with appropriate major studies; or
- A diploma or equivalent award with appropriate major studies and at least two years relevant work experience; or
- At least three years health, safety and/or environment management experience.

CREDIT POINTS

DURATION

2 years part-time

Block (three weeks in January & July)

COURSE OVERVIEW

The course is designed for people who have managerial responsibilities for Health, Safety and Environment (HSE) in their workplace, or for those who aspire to such positions.

The course provides a robust, integrated and multidisciplinary framework on which future knowledge can be built. The course produces selfdirected learners who have the academic framework and skills to tackle new issues in HSE as they arise.

COURSE OBJECTIVES

The course is designed to enable students to:

Knowledge

- Describe and explain appropriate means of predicting, identifying, assessing and controlling occupational/environmental hazards;
- Describe and explain appropriate means of quantifying, predicting, estimating and controlling occupational/environmental risk;
- Explain the accident process;
- · Describe and critically analyse the legal, social, organisational and academic environments within occupational health. safety environmental specialists operate;
- Describe and explain appropriate strategies for the integrated, strategic management of occupational health and safety within organisations;
- Describe and explain effective processes for achieving organisational learning in relation to occupational/environmental hazard management;
- Describe and explain learning strategies and their approaches to learning;
- Explain knowledge creation and its limitations in the field of occupational/environmental hazard management; and
- Explain the interconnectedness of disciplines within the occupational/environmental hazard management field.

Skills

- Construct credible arguments for the inclusion of effective health and safety management in corporate objectives;
- Initiate, implement and evaluate comprehensive, integrated health and safety programs;
- · Locate, retrieve, evaluate, manage, process and use information relating to occupational health and
- Predict, define and solve problems arising from the complex connections and interactions in human machine - environmental systems;
- Coordinate internal and external resources and agencies involved in occupational health and safety management within an organisation;
- Predict likely technical and organisational sources of failure of control strategies;
- Communicate effectively about occupational/ environmental hazard management with various individuals and groups in a range of settings, using a range of media, for a range of purposes;
- Work as an effective team member and team
- Facilitate organisational learning in relation to occupational/environmental hazard management;
- Evaluate their learning and apply new learning methods;
- Criticise knowledge claims, integrate knowledge, argue logically and be aware of bias and judgements of value in the occupational/ environmental hazard management field;
- · Apply appropriate problem solving techniques; and
- Use appropriate information technology.

Attitudes/Values

- Appreciate the importance of occupational/ environmental hazard management for the well being of all members of workplaces and communities at large;
- Appreciate the importance of occupational/ environmental hazard management for the achievement of corporate goals;

- · Appreciate the organisational learning necessary for the successful management of occupational/ environmental hazards;
- · Appreciate curiosity, probing questions and continuous learning;
- · Appreciate creativity and the power of imagination;
- · Appreciate the need for sensitivity to cultural diversity, and gender issues, in the workplace and the community;
- · Appreciate the social/ethical responsibilities of industry and the people who work in it; and
- · Appreciate the value of professional practice of ancillary knowledge and skills.

COURSE STRUCTURE

Year 1

Session 1	credit
	points
HSE Systems 1 - Introduction	10
and Context	
HSE Law	10
Control of Hazards 1 -	10
Accident Analysis Models	
Session 2	
HSE Systems 2 - Prevention	10
Management Concepts and	
Leadership	10
Control of Hazards 2 - Risk	10
Assessment and Control	
Techniques	
Session 3	
HSE Systems 3 –	
Compensation and	
Rehabilitation	10
Quantitative Methods in HSE	10
Control of Hazards 3 -	
Managing Hazards	10
Session 4	
HSE Systems 4 - Workplace	
Audits and Dissertations	10
Management and Change	10
Control of Hazards 4 –	
Managing Hazards	10
	HSE Systems 1 - Introduction and Context HSE Law Control of Hazards 1 - Accident Analysis Models Session 2 HSE Systems 2 - Prevention Management Concepts and Leadership Control of Hazards 2 - Risk Assessment and Control Techniques Session 3 HSE Systems 3 - Compensation and Rehabilitation Quantitative Methods in HSE Control of Hazards 3 - Managing Hazards Session 4 HSE Systems 4 - Workplace Audits and Dissertations Management and Change Control of Hazards 4 -

PROFESSIONAL RECOGNITION

Membership of:

- · Safety Institute of Australia
- · Australian Institute of Risk Management.

Master of Applied Science (Occupational Health & Safety)

(by Coursework)

COURSE COORDINATOR

Prof. Dennis Else

ADMISSION REQUIREMENTS

Applicants must have a University degree and suitable industrial experience for entry in Year 1 or have completed the University's GDipOHM and have industrial experience for entry into Year 3 of the Masters program.

CREDIT POINTS

240

DURATION

4 years part-time

MODE

Block (January & July)

COURSE OVERVIEW

The Master's program aims to produce good researchers and people who can publicly comment on occupational health and safety issues.

The Masters by Coursework is a four year, part-time program. The first two years of the Masters program is the Graduate Diploma in Occupational Hazard Management (or equivalent). The final two years of the program concentrate on the design and implementation of a research project.

COURSE OBJECTIVES

To produce good researchers and people who can publicly comment on occupational health and safety

Knowledge

- · Contemporary issues in occupational health and safety; and
- · Multidisciplinary approaches to research.

Skills

- · Problem solving;
- · Rigorous, reflective scientific research;
- · Retrieving and evaluating information;
- · Working with industry and trade unions; and
- · Writing seminar papers and journal articles.

- · Robust, systematic argument, backed by scientific evidence:
- · Professional peer review of one's work;
- · New ideas; and
- Practical application of ideas to industrial problems.

COURSE STRUCTURE

For the first two years of the Masters program please refer to the Graduate Diploma in Occupational Hazard Management course structure.

VEAR 3

unit		credit
code		points
EV810	The Critical Researcher	30
EV820	Research Methodology and	
	Design	30

Year 4

unit		credit
code		points
EV830	Presentations	20
EV840	Thesis	40

PROFESSIONAL RECOGNITION

Membership of:

- Safety Institute of Australia
- Australian Institute of Risk Management.

Listed below are the accredited undergraduate units from the School of Science and Engineering that may be available as elective units to students enrolled in any University programs. Students should confirm availability with the School Administrative Officer.

unit code	School of Science and Engineering Units	credit points
EG401	Mine Power Supply and Drainage	15
EG402	Production Drilling and Blasting	15
EG403	Tunnelling and Mine Development	15
EG404	Underground Production Systems	15
EG405	Materials Handling and Hoisting	15
EG408	Company Economics and Finance	15
EG409	Rock Mechanics Applications	15
EG410	Ore Reserve Estimation	15
EG411	Surface Mining Operations & Equipment	15
EG413	Mine Safety & Environmental Engineering	15
EG414	Mine Surveying	15
EG415	Environmental Management of Mines	15
EK511	Fundamentals of Engineering (Calculus & Physics)	15
EK550	Introduction to Design and Practice	15
EK565	Fundamentals of Engineering (Statics)	15
EK566	Fundamentals of Engineering (Dynamics)	15
EK570	Fundamentals of Engineering (Materials)	15
EK580	Fundamentals of Engineering (Electricity & Magnetism)	15
EK590	Fundamentals of Engineering (Applied Mathematics 1)	15
EK635	Engineering Surveying	15
EK636	Introduction to Infrastructure Engineering	15
EK640	Theory of Machines & Drives	15
EK645	Analysis of Electrical Machines & Drives	15
EK650	Principles of Design & Analysis	15
EK660	Fundamentals of Engineering (Fluids & Thermofluids)	15
EK670	Occupational Health & Safety	15
EK680	Fundamentals of Engineering (Solid Mechanics)	15
EK690	Fundamentals of Engineering (Applied Mathematics 2)	15
EK701	Numerical Methods for Engineers	15
EK722	Engineering Management & Finance	15
EK731	ElectroTechniques	15
EK732	Thermofluids	15
EK733	Analysis of Dynamic Systems 1	15
EK734	Analysis of Dynamic Systems 2	15
EK741	Structural Design & Analysis	15
EK742	Transport Infrastructure	15
EK744	Water & Drainage Infrastructure	15
EK750	Engineering Design	15
EK751	Technology & Society	15
EK752	Structural Design	15
EK753	Computer Applications in Mining	15
EK781	Geomechanics	15
EK783	Underground Production Systems	15
EK784	Surface Mining Operations	15
EK821	Mine Planning and Scheduling	15
EK822	Advanced Mine Ventilation	15
EK823	Advanced Rock Mechanics	15
EK824	Advanced Rock Breakage	15
EK825	Mine Environmental Engineering	15
EK831	Machine System Design	15
EK833	Industrial Systems Control 1	15
EK834	Industrial Systems Control 2	15
EK835	Machinery Dynamics	15
EK837	Industrial Communication & Networking	15
EK838	Strength of Materials	15
EK841	Waste & Waste Water Infrastructure	15
EK843	Infrastructure Design & Construction 1	15
EK844	Infrastructure Design & Construction 2	15
EK845	Infrastructure Planning & Management 1	15
EK846	Infrastructure Planning & Management 2	15
EK851	Design Project 1	15
EK852	Design Project 2	15
LINOUZ	Research Project 1	15

unit code	School of Science and Engineering Units (continued)	credit points
EK872	Research Project 2	15
EK875	Vibration and Machine Dynamics	15
EK876	Design of Thermal Systems	15
EK877	Refrigeration and Air Conditioning	15
EK878	Robotics	15
EK879	Renewable Energy	15
EK881	Rock Mechanics Applications	15
EK882 EK883	Mineral Processing Subsurface Environmental Engineering	15 15
EK884	Mine Power & Services	15
EK885	Ore Deposit Evaluation	15
EK890	Professional Practice	0
EK891	Programmable Logic Controllers	15
EK892	Turbomachinery	15
EK893	Microcontrollers	15
EK894	Automated Systems Control	15
EK895	Industrial Data Communications	15
EK896	Industrial Electronics	15
EV471	Health, Safety & Environment Systems 1 – Introduction and Context	10
EV472	Health, Safety & Environment Systems 2 – Prevention	10
EV473	Health, Safety & Environment Systems 3 - Compensation & Rehabilitation	10
EV474	Health, Safety & Environment Systems 4 - Workplace Audits & Dissertation	10
EV481	Contemporary Approaches to HSE	10
EV491	Control of Hazards 1 - Accident Analysis Models	10
EV492	Control of Hazards 2 - Risk Assessment and Control Techniques	10
EV493	Control of Hazards 3 - Managing Hazards	10
EV494	Control of Hazards 4 - Managing Hazards	10
EV500	Occupational Health, Safety and Environmental Management Systems	30
EV501	Occupational Hazard Management	30
EV810	The Critical Researcher	30
EV820	Research Methodology and Design	30
EV830	Presentations	20
EV840	Thesis	40
EV851	Studies in Occupational Hazard Management A	10
EV852	Studies in Occupational Hazard Management B Studies in Occupational Hazard Management C	15
EV853		20 15
SE400	Major Project Vegetation Management	
SE490 SE491	Catchment Management	15 15
SE520	Australian Biota	15
SE522	Environmental Management	15
SE532	Ecological Methods	15
SE560	Australian Ecosystems	15
SE622	Environmental Ethics and Philosophy	15
SE630	Population & Community Ecology	15
SE640	Australian Fauna	15
SE653	Wetlands	15
SE662	Pests Plants and Animals	15
SE670	Soil Science	15
SE672	Geographic Information Systems	15
SE680	Australian Flora	15
SE721	Protected Area Management	15
SE722	Reserve Management	15
SE741	Fauna Management	15
SE751	Flora Management	15
SE752	Forest Management	15
SE753	Rangeland Management	15
SE761	Aquatic Ecosystem Management	15
SE762	Soil Conservation	15
SE771	Survey and Assessment	15
SE781	Environmental Management Project	15
SF431	Food Processing Systems	15
SF432 SF433	Food Safety	15
3F433	Food Science	15
SF434	Food Quality Management	15

unit		credit
code	School of Science and Engineering units (continued)	points
SF481	The Brewing Process	15
SF482	Yeast and Fermentation	15
SF483	Malt and Brew Quality	15
SF484	Packaging and Quality	30
SF485	Engineering and Downstream Processing	30
SF511	Chemistry I	15
SF512	Chemistry 2	15
SF514	Nature of Food	15
SF532	Introductory Microbiology	15
SF552	Food Science & Nutrition	15
SF553	Food in Society	15
SF621	Food Processing Systems I	15
SF622	Food Processing Systems 2	15
SF631	Food Microbiology I	15
SF632	Food Microbiology 2	15
SF641	Food Analysis	15
SE642	Food Chemistry	15
SF651	Applied Biochemistry	15
SF653	Nutrition and Metabolism	15
SF721	Food Processing Systems 3	15
SF722	Product and Process Development	15
SF731	Fermentation Technology	15
SF732	Malting and Brewing Science	15
SF741	Advanced Food Chemistry	15
SF752	Food Biotechnology	15
SF761	Food Quality Management	15
SF771	Research Project	15
SX511	Earth Sciences	15
SX521	Planet Earth	15
SX522	Landscape Evolution	15
SX523	Earth's Living History	15
SX601	Regolith Science	15
SX617	Optical Mineralogy	15
SX618	Structural Geology	15
SX619	Sedimentology	15
SX627	Economic Geology	15
SX628	Hydrology	15
SX629	Field Work Principles & Practice	15
SX630	Geological Data Analysis	15
SX631	Palaeontology	15
SX717	Petrology	15
SX718	Applied Geochemistry	15
SX719	Field Work	15
SX726	Applied Stratigraphy	15
SX728	Applied Geophysics	15
SX729	Project	15
SX730	Analytical Techniques	15
SX731	Exploration and Mining Geology	15
SX732	Advanced Field Work	15
SX733	Engineering Geology	15