

THE ELEGI

..... LIMITED

Companion Volumes

SHOP TESTS ON ELECTRIC CAR EQUIPMENT. For Inspectors and Foremen.

Price, \$1.00 Net

MISCELLANEOUS TESTS OF ELECTRIC CAR EQUIPMENT

Price; \$1.00 Net

MISCELLANEOUS TESTS

OF

ELECTRIC CAR EQUIPMENT

by EUGENE C. PARHAM, M. E. And JOHN C. SHEDD, Ph.D.

McGRAW-HILL BOOK COMPANY 239 WEST 39th ST., NEW YORK 6 BOUVERIE ST., LONDON, E. C. 1910

THE ELECTRIC SUPPLY COMPANY OF VICTORIA LIMITING

Copyright, 1910 by the McGRAW-HILL BOOK COMPANY

PREFACE

The present volume is the second of two, the first being entitled "Shop Tests on Electric Car Equipment." In the first volume many of the more common and some less common, but useful, equipment tests were so described as to be readily available to men of limited testing facilities and experience. The second volume continues this effort to present the testing subject in a simple and direct manner and embodies tests and explanations that could not well be included in the first book. It is believed that the two books cover a large part of the equipment-testing field in a way not previously attempted, both in the manner of presentation and in that, information hitherto scattered, has been brought within the scope of two comparatively small books. In giving numerous rules, examples, solutions, directions, notes and rehearsing questions, the authors have tried to treat the subject in a practical manner; the purpose being not only to reach nonmathematical readers, but to give mathematical readers of limited experience a line on how such tests are actually made with the facilities usually available, rather than how they might or should be made under ideal conditions. If these objects have been accomplished we feel that the mission of the book has been attained.

THE AUTHORS.

NEW YORK, April 1st, 1910.

TABLE OF CONTENTS

PART I-STATIONARY TESTS

CURRENT COLLECTORS-	
Overhead Trolley	1
Conduit System	4
Third Rail System	6
CAR FUSES-	
Blowing Tests	7
Calculation of Fuse Capacity	8
Fuse Test Requirements	9
CAR CIRCUIT BREAKERS-	
Periodic Tests	10
Adjustments	11
Auxiliary Apparatus	13
CAR CONTROLLERS-	
Mechanical Tests	15
Electrical Tests	18
Inspections	22
CAR STARTING COILS-	
Ohmic Resistance	25
Changed Conditions	29
CAR LIGHTNING ARRESTERS-	
Connection Tests	33
CAR WIRING CABLES—	
Preliminary Considerations	37
Tagging and Insulation Tests	39
Car Motors-	
Brush Holders Requirements	42
" " Irregularities	44
" " Miscellaneous Topics	51
Motor Insulation Tests	55
" Circuit Test	56
Field Coil Polarity Test	61
Carbonized Field Coils	63
Armature Clearance	66

VII

THE ELECTRIC SUPPLY COMPANY OF VICTORIA LIMITED

CONTENTS

PART II-MOTION TESTS

MOTOR BALANCE TESTS-	
Voltmeter Method	70
Lamp Circuit Method	74
Ammeter Method	74
Milli-Voltmeter Method	70
Value as a Field Test	18
Motor Heating Tests-	82
Object of Heat Test	~
Test Connections	83
" Instructions	84
" Readings	86
EFFICIENCY TESTS-	87
Definitions	
Electrical Efficiency Test	90
Commercial " "	91
ENERGY ABSORPTION TESTS	92
Introductory	
Indicating Wattmeter Methods	95
Voltmeter-Ammeter "	96
Record Sheets	97
Analysis of Test Sheet	99
MISCELLANEOUS TESTS-	100
Speed Tests	
Acceleration Tests	112
Retardation Tests	114
Train Resistance	119
Horse Power of Traction	122
Total Horse Power of Operation	125
HELP TO THE INURED	128
Reviving Shocked Persona	
Relieving Burns	131
Rehearsal Questions	133
Index	135
	154

INDEX OF RULES

PAGE

Co.	find	size of copper fuse wire	8
"	"	"shocking" voltage	31
"	"	area of brush contact	50
"	"	brush pressure	51
"	"	center to center brush count	53
"	"	inside brush count	54.
"	"	per cent, difference of meter readings	72
"	"	number of lamps for given voltage on balance	
		test	74
"	"	voltage for motor in balance test	75
"	"	speed from voltage readings	87
"	"	temperature rise from rise in resistance	88
"	"	degrees Fahrenheit from degrees Centigrade .	89
"	"	" Centigrade from degrees Fahrenheit .	89
"	"	per cent. efficiency from output and input	91
"	"	electrical efficiency from known voltage cur-	
		rent and resistance	91
"	"	Watts absorbed in brake test	93
"	"	" input of motor from current and Volt-	0.1
		age readings	94
"	"	watt hours from indicating wattmeter	97
"	"	car weight in tons from weight in pounds	101
"	""	rated horsepower of equipment	101
"	"	time in hours from time in minutes	102
"	"	average voltage	103
"	"	" current of all readings	104
"	""	" of current readings	104
"	""	" power, in watts, of all readings	100
"	"	" " of power readings	100
"	""	" car speed	107
"	"	watt hours absorbed	107

IX

THE EVENTHIC OUPPLY COMPANY OF FOTOMIA LANIAGE

INDEX OF RULES

T	C 1	PAGE	
10	find	kilowatt hours from watt hours 107	
	"	horsepower hours from kilowatt hours	
"	"	average kilowatts (or kilowatt hours per hour) 108	
"	"	" kilowatt hours per mile 108	
"	"	" " " top 100	
"	"	" kilowatts per top (or bilowatt h	
	11	per hour per ton)	
"	"	average kilowatt hours	
"	**	speed in miles from with	
"	"	" " " " " " " " " " " " " " " " " " "	
"	"	" " " rail count—60-ft rails 112	
"	"	" pole count 113	
"	"	on measured track 113	
"	"	acceleration in miles per hour per second 114	
"	"	fetardation "" " " " " " " 120	
		feet per second per second from miles per hour	
"		per second	
		average speed during acceleration	
		maximum " due to " 116	
		force in pounds to produce given acceleration	
	-	in miles per hour per second	
	"	force in pounds to produce given acceleration	
		in feet per second per second	
"	"	horsepower of acceleration	
"	"	total train resistance.	
"	"	grade resistance 123	
**	""	average horsepower of traction	
: 6	"	horsepower required on grade	
:6	"	rise in feet of given grade 127	
16	"	per cent, grade from image	
:4	"	total horsepower of area to	
		129	

Miscellaneous Tests of Electric Car Equipment

PART I STATIONARY TESTS

CURRENT COLLECTORS

OVERHEAD TROLLEY

1. Rough Pressure Test. The trolley wheel should safely engage the trolley wire at all heights. In tunnels and culverts, the wire may be low and the pressure of the wheel, excessive; at steam road crossings, the wire may be high and the pressure so weak that the wheel jumps—a dangerous condition. The rough pressure test is to try the pressure when the pole is almost vertical: the test is made as follows:—

2. Directions. To apply the rough test for trolley pole contact pressure, Pay out the rope and let the pole go to a vertical position; if it does so promptly, the pressure is sufficient for all conditions. If not, Increase the pressure with the adjusting nut and repeat the test.

3. Scale Pressure Test. This test is made with a spring scale on which can be read the pounds pull required to just lower the wheel from a stretch of wire of standard height.

4. Directions. To measure the pressure of the trolley wheel against the wire with a spring scale,

х

1

INDEX

Dynamos.

Armature,

clearance of, 66–69 ground in, 60 insulation of, 55 open circuit, 57–59 short circuit, 60 wear of, 47

Brush holders, alinement of, 42-45 wear of armature, 47 Brush maintenance, 54 miscellany, 51-56 pressure, 48-50 spacing, 45 Burns, 133

Canted brushes commutator "counting off," 47 height of, bracket, 46 symmetry of, 43 types of, 44 Car-wiring cables, 39–40 Circuit breakers, adjustment of, ammeter method, 11 adjustment of, limit breaker method, 12 periodic tests of, 10 Copper wire used as fuse, 8

self excited, 84 separately excited, 85 efficiency of, commercial, 90 efficiency of, electrical, 90 Energy, absorption of, see tests Field coils, see tests

Fuses, see tests

Help to injured, 131

Insulation, of armature, 55 of brush holder, 56 of car cable, 40 of conduit, 5 of field coil, 55 of starting coil, 29

Lightning arresters, air gap adjustment, 35 connections of, 33-34 operating, 35

Millivoltmeter to Calibrate. 80-81 Motor—see tests

Pressure—see tests trolley—see tests, 1

154

INDEX

Shock, aid in case of, 131 Starting coil, resistance of—see tests, 25

Temperature, rise, calculated from the increase in resistance, 88 Test lines, method of attaching, 13-14

TESTS

Acceleration tests, 114 Armature test for ground in, 60 for insulation, 55 for open circuit, 57–59 for short circuit, 60

Balance test, 71-78 Brush holder, insulation test, 56 pressure test, 49

Car-wiring cable insulation test, 40 Controllers, Electrical tests, for ground in, 21 for open circuit in, 18 for short circuit in, 20 inspection of, 22 Mechanical tests, for alinement, 16–17 for interference, 15 for interlocks, 15 Controllers—Continued for notch spacing, 17 precautions, 23

Efficiency test, for commercial efficiency, 92 for electrical efficiency, 91 Energy absorption tests, by integrating wattmeter method, 96 by volt-ammeter method, 97 by watt hour meter method, 95

Field coils tests. for carbonization, 63-66-82 for insulation, 55 for open circuit, 56 for polarity, 61-62 for short circuit, 59 Fuses, tests for, blowing test, 7 calculating capacity of copper wire, 8 instantaneous test, 7 operating test, 8 requirements for test, 9 time element, 7

Heat test, 83 Horsepower of traction tests, 125 total tests, 128

155

INDEX

Lightning arresters, tests, Retardation test, 119 35 Motor balance test, on two-motor car, 71, 74, 76, 78 on four-motor car, 73-78 heat test, 83

Pressure tests, conduit, 4 third rail, 6 trolley, 1-3

Speed test, 112 Starting coils, insulation test, 29 section test, 25 shock test, 30 Temperature test, 88

Train resistance test, 122 Time element of fuse, 7 Trolley-see tests

Water rheostat, 13

156