CBD PASSENGER SURVEY
AUGUST 1977

PAGE NOS.

FIGURE NO.

1. Passenger Survey Card 2
2. Cumulative Distribution of Boarding Sections 7
3. Passenger Boarding Sections 8
4. Mode of Arrival to Boarding Stop 13
5. Arrival Mode by Geographic Location 15
6. Car-Tram Commuters 17
7. Trip Purpose by Arrival Time 20
8. Travel Modes to and from Tram/Bus 23
9. Walk Times to and from Public Transport 26
10. Work Distribution within the CBD. 28
TABLE NO.
11. Distribution of Passenger Boarding Sections 6
12. Access Mode to Tram and Bus 9
13. Average Access Time 9
14. Mode of Arrival to Boarding Stop 10
15. Time to Boarding Stop 11
16. Main Routes Selected by Car Drivers 18
17. Trip Purpose 19
18. Egress Mode from Tram and Bus 21
19. Method of Continuation of Journey 22
20. Number of Transferring Passengers 25

1. INTRODUCTION :

As part of the Planning Branch data collection programme it was proposed that a survey be conducted to provide origin/destination information on passengers entering the Central Business District (CBD) during the morning peak period.

The sirivey was conducted during the two week period from Friday, 12th August, 1977. As this was the university holiday period, students were employed to carry out the survey and collate the data collected. Approximately thirty students were needed to cover the initial morning peak survey from 7.00 to $10.00 \mathrm{a} . \mathrm{m}$. During the off-peak they were engaged in load checks within the city and in vetting and coding the survey data as the replies came in.

The survey was conducted in two parts : the first consisting of the distribution of pre-paid postal reply cars (Figure 1) to all passengers on trams and buses travelling within the first section outside the CBD (Section 2; the 1st section being the CBD); the second part involved cordon counts at the points of entry to the CBD to relate survey replies to actual passenger loads on each route.

Approximately one-third of the trams on all routes entering the CBD were surveyed between 7.00 and $10.00 \mathrm{a} . \mathrm{m}$. 13,883 cards were handed out over a ten day period. Each day specific routes were covered. Appendix I and II show which routes were covered each day and how routes were amalgamated for coding purposes. 6,015 replies were received giving a better than expected return of 43.3%. The cordon counts were done in conjunction with the routes surveyed. From the cordon counts, an estimated 32,062 passengers enter the CBD during the morning peak. The replies represent a sample rate of 19%.

As the replies were received, they were vetted for unintelligible information and coded so that the information collected could be sorted and grouped by computer to highlight meaningful relationships. Using the cordon count results, the survey replies were "factored-up" (by routes, by time period) to give totals for all passengers entering the CBD during the morning peak (see Appendix III).

Melbourne and Metropolitan Tramways Board PASSENGER SURVEY

PLEASE COMPLETE THIS CARD DURING THE DAY AND RETURN THE TEAR-OFF PORTION BY POST (NO STAMP IS NECESSARY).
THE QUESTIONS RELATE TO YOUR JOURNEY this morning.
THANK YOU.
At which stop or cross street did you board this tram/bus?

How did you arrive at your boarding stop? (If "Other", please specify.)

Approximately how many minutes did it take for you to get fron: your home to your boarding stop?
Why did you make this trip?
(If "Other", please specify.)
How did you complete your journey after leaving this tram/bus? Tick more than one box if necessary.
(If "Other", please specify.)
If, after leaving this tram/bus, you caught ANOTHER tram/bus, in which street did you catch it?

ON THE MAP PLEASE MARK THE ROUTE YOU TOOK THROUGH THE CITY THIS MORNING TO REACH YOUR FINAL DESTINATION.
NDICATE YOUR FINAL DESTINATION WITH A CROSS (X)-E.G., IF "WORK" TRIP, MARK WORK PLACE; IF "SHOPPING" TRIP, MARK FIRST SHOP VISITED.
IF YOUR DESTINATION IS NOT ON THE MAP, TRACE YOUR ROUTE TO THE EDGE OF THE MAP AND WRITE THE SUBURB WHERE YOUR TRIP FINISHED IN THE SPACE PROVIDED.

SERIAL NUMBER
Walk \square
Car passenger \square

Other. $\square$$\quad$| Bus \square |
| ---: |

minutes

Work \square Recreation	School \square Other \square	Shopping \square
Walk Train	Tram Car	Bus \square

Other.

Suburb

Figure 1.

Survey cards were designed to obtain certain basic travel information about MMTB passengers on a normal weekday :

- how MMTB patrons arrive at their tram/bus boarding stop
- how long it takes to reach their boarding stop
- why they make the journey
- how they complete their journey
- where they go in the CBD or beyond it.

The serial numbers of the survey cards allowed the information to be related to time and route.

Many passengers wrote comments on the survey cards related to service, fares, operation of the system etc., which have been set out in Appendix XII at the back.

The following report contains a summary of the results of the survey and an analysis of the information collected.

Boarding Section *
 3.1

The MMTB system draws nearly 68 percent of its CBD-bound passengers from within the first 5 sections of the city - or approximately 8 kilometres radius of the city centre. 90 percent come from within 7 sections or 11 kilometres (Bus routes are, on the average, incorporate more sections. (Table 1, Figure 2) is accounted for by this difference in length of route as buses draw a certain percentage of their patronage from these outer sections. Bus passeng
Figure 3 shows the approximate area covered by each section
of the MMTB network.

MODE :
TRAM PASS.
BUS PASS. TOTAL PASS.

* Cumulative \%

TABLE 1. CBD PASSENGER SURVEY AUGUST 1977
DISTRIBUTION OF PASSENGER BOARDING SECTIONS

షפษLNGDชGd

5)
M.M.T.B. SECTION

CUINULATIVE PERCENTAGE
ERS AT BOARDING SECTIONS CRS AT BOARDING SECTIONS

Figure 3.

The passengers were next asked how they arrived at their boarding stop. The options are listed below with the passenger response, and the average travel time to the boarding stop for each mode :

Access Mode	Tram Pass. $(\%)$	Bus Pass. $(\%)$	Total $(\%)$
	75	75	
Walk	2	2	75
Tram	3	7	2
Bus	9	10	4
Car Passenger	11	6	9
Car Driver		10	

TABLE 2. ACCESS MODE TO TRAM AND BUS.

Access Mode	Average Access Time
	5 mins.
Walk	15 mins.
Tram	15 mins.
Bus	15 mins.
Car Passengers	20 mins.
Car Driver	8 mins.

TABLE 3. AVERAGE ACCESS TIME.

Walkers predominate in every boarding section except section 2 (Table 4). Car passengers represent a larger proportion in the sections furtherest from the CBD. These sections correspond to the terminii of the various routes.

Table 5 shows that 94% of these passengers walk less than 10 minutes to reach their stop with 74% taking 5 minutes or less. Considering that walkers represent the largest portion of morning patronage, the MMTB system draws 70% of their CBD bound travellers from a radius of .8 kilometres around routes. This finding is supported by evidence from other arrival time studies conducted along the Coburg tram route and Bulleen bus route.

Mode	SECTION												Total	
	2	3	4	5	6	7	8	9	10	11	12	13		
	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\#
Walk	43	76	81	82	82	79	86	85	84	71	66	57	75	23,845
Tram	2	2	2	2	3	4	3	1					2	. 666
Bus	1	4	3	7	5	7	3	6	5		2		4	1,206
Car Passenger	17	9	8	6	7	10	9	5		29	27	43	9	2,969
Car Driver	36	13	6	3	3	4	2	4	1		4		10	3,126

TABLE 4. MODE OF ARRIVAL - AS \% OF PASSENGER AT EACH SECTION.

$\begin{aligned} & \text { Time } \\ & \text { in } \\ & \text { Mins. } \end{aligned}$	in	7 1 i	ए 1 1 -1	8 1 10 -1		¢ 1 N	+	O 1 1 0	+ 1 1 0 4	10 1 4 7	규 1 0 0	8 i i 0	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	Mean	Total \# of Passengers
Access Mode	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	(mins.)	
Walk	73.6	20.3	3.7	. 7	. 6	. 5	. 3	. 2	. 1			. 1		5	23,845
Tram	33.2	16.8	14.7	9.9	4.8	6.9	3.6	1.4	6.2	. 7		1.9		15	666
Bus	16.4	23.6	23.8	12.0	7.0	6.7	3.6	2.3	3.0	. 3		1.2		15	1,206
Car Passenger	25	18.7	14.7	13.8	5.9	9.7	4.6	2.8	2.7	. 8	. 1	. 6	. 4	15	2,969
Car Driver	0.2	11.6	17.1	22.8	$10.2{ }^{-}$	13.0	4.2	3.7	3.5	1.1	. 5	2.1	1.1	20	3,216
TOTAL	59.5	19.1	7.0	4.8	2.4	3.0	1.3	. 9	1.0	. 2	. 1	. 4	. 2	8	32,067

TABLE 5. TIME TO BOARDING STOP -

Car drivers and car passengers account for 53% of all passengers boarding in section 2 (see Table 4). While overall journey times for those arriving at their boarding stop by car is longer than for any other mode, the average times (15 mins . car passengers, 20 mins. car drivers) still indicate that most (74%) of these car-linked trips originate from within the MMTB system - e.g. within a radius of 9-11 kilometres of the city centre.

Figure 4 shows this comparison of arrival modes by boarding section.

There is considerable variation in the arrival methods used by passengers in different geographical areas of the city. (See Appendicies III - VIII).

While cross-town and outer-urban private bus routes comprehensively cover a major portion of the Melbourne and metropolitan district only the northern and western tram routes collect a major percentage (7% to 8.2%) of their passengers from intersecting ius and tram routes. The East Preston routes collect bus passengers at Tyler Street terminus, Bell Street, Clarendon and Separation Streets. The Essendon line draws passengers from the private bus terminii at Napier and Puckle Streets.

The northern and western suburbs also generate more car-tram trips (26.5% and 25% respectively), especially in the furtherest (sections 7 and 8) and nearest (section 2) boarding sections. The residential subdivisions developing out in Sunbury and Melton and beyond Bundoora and the four main highways feeding into the western side of the city would feed more cars into this area than into the eastern and southern suburbs which are already densely settled within the more comprehensive tram, rail and bus system.

MEAN OVER
SECTION
ALL SECTIONS

Figure 5 shows this comparative percentage of modes in the different geographic areas of this city.

The southern and eastern tram routes seem to carry a higher percentage of residents (82% and 80% walkers to routes) than the other areas. In fact, the southern routes have far fewer modal transfers than any of the others (see Appendix VII). One reason for this is that the comprehensive layout of the tram lines in the southern suburbs ensures that most residents are within walking distance of a route.

Lack of a sufficient sample prevented the geographic breakdown of the bus system, but the histogram, figure 5, and the sectional variation graph, Appendix VIII, show no significant difference in arrival mode compared to the tram system.

