Showing 41 items
matching laboratory lecturer
-
University of Melbourne, School of Chemistry
Glass Stirrer
Stirrer, used in Optical Glass work, Hartung & associates, 1941 Ernst Johannes Hartung was a chemist and astronomer. Educated at the University of Melbourne (BSc 1913, DSc 1919), he became lecturer in 1919, associate professor in 1924, and succeeded Rivett as chair of chemistry in 1928, remaining in this position until 1953. Hartung?s lecturing style surged with enthusiasm and he employed the use of screen projections to demonstrate chemical phenomena to large undergraduate classes. In 1935 he recorded Brownian movement in colloidal solutions on 35 mm cinefilm, which was later copied onto 16 mm film for the Eastman Kodak Co. World Science Library. This can be viewed in the Chemistry laboratory. He researched the photo decomposition of silver halides, and was awarded the David Syme Prize in 1926. He devoted time to the design and construction of a large, new chemistry building for the School of Chemistry (built 1938?1939). During World War II he was approached by Professor Thomas Laby, chairman of the Optical Munitions Panel, to chair the advisory committee on optical materials, to produce high quality optical glass in Australia. This was successful, with large-scale production achieved within ten months at a reasonable cost. Hartung served three terms as general President of the (Royal) Australian Chemical Institute, was an ex-officio councillor of the Council for Scientific and Industrial Research, and a Trustee of the Museum of Applied Science (now part of Museum Victoria). -
University of Melbourne, School of Chemistry
Microscope Accessories
Ernst Johannes Hartung was a chemist and astronomer. Educated at the University of Melbourne (BSc 1913, DSc 1919), he became lecturer in 1919, associate professor in 1924, and succeeded Rivett as chair of chemistry in 1928, remaining in this position until 1953. Hartung?s lecturing style surged with enthusiasm and he employed the use of screen projections to demonstrate chemical phenomena to large undergraduate classes. In 1935 he recorded Brownian movement in colloidal solutions on 35 mm cinefilm, which was later copied onto 16 mm film for the Eastman Kodak Co. World Science Library. This can be viewed in the Chemistry laboratory. He researched the photo decomposition of silver halides, and was awarded the David Syme Prize in 1926. He devoted time to the design and construction of a large, new chemistry building for the School of Chemistry (built 1938?1939). During World War II he was approached by Professor Thomas Laby, chairman of the Optical Munitions Panel, to chair the advisory committee on optical materials, to produce high quality optical glass in Australia. This was successful, with large-scale production achieved within ten months at a reasonable cost. Hartung served three terms as general President of the (Royal) Australian Chemical Institute, was an ex-officio councillor of the Council for Scientific and Industrial Research, and a Trustee of the Museum of Applied Science (now part of Museum Victoria).Accessories for microscope etc.used in E.J.Hartung's work -
University of Melbourne, School of Chemistry
Gold Assay Balance
Born in Ireland, John Drummond Kirkland trained as a chemical analyst through apprenticeship in a medical laboratory in Dublin, before migrating to Australia in 1852 and moving to Melbourne in 1855. While still an undergraduate medical student at the University of Melbourne, he was appointed lecturer in chemistry following the sudden death of John Macadam in 1865. Due to the enthusiastic support of his fellow students this temporary role became a permanent appointment the following year. Kirkland continued his studies, graduating in medicine in 1873 and surgery in 1880. His son, John Booth Kirkland, was appointed as his assistant in 1878, later leading to accusations of nepotism. In 1882 John Drummond Kirkland became the University?s first professor of chemistry and metallurgy, continuing until his death in 1885. Today?s researchers use a high performance computing facility named ?Kirkland? after the first Professor of Chemistry at the University of Melbourne. Chemistry was still controlled by the medical school during Kirkland?s career, but became part of the science degree from 1886, along with the appointment of David Orme Masson as professor. Kirkland struggled for University funding to buy new apparatus. To compensate, he bought much from his own personal funds, including analytical chemistry equipment. Chemistry was first taught at Melbourne in the medical school, located in the area now occupied by Physics and the Ian Potter Museum of Art.Gold Assay Balance, almost certainly Kirkland's own. -
University of Melbourne, School of Chemistry
Microbalance
An original Kerr-Grant Microbalance, modified by E.J.Hartung This balance was invented in the chemistry department by Bertram Dillon Steele, later first Professor of Chemistry at the University of Queensland 1910-1930, in collaboration with Professor Kerr Grant, Physics. The design was widely used by other chemists, including Masson's mentor, Professor Ramsay, working in London on newly discovered rare gases (especially Radon), and Professor Hartung in Melbourne, investigating the chemistry of the decomposition of silver salts in photographic processes. The principle of the microbalance was to measure the change in density of a gas by the shift in the balancing beam due to a change in pressure of the gas in the balance case. The quartz balancing beam was made by Bertram Steele who was particularly skilled in glassblowing. A quartz beam is the beam of the Aston microbalance based on the Steele/Grant instrument, and described by F.W. Aston, the inventor of the mass spectrometer. The bulb at one end of the beam contained a fixed amount of air, so that a change in the pressure of gas in the balance case changed the buoyancy of the beam, yielding a displacement in the beam which could be measured. By this means, differences in weight of about 10 nanogram could be measured, in amounts of up to 0.1 gram. Such differences are significant the increase in weight of a metal sample due to surface oxidation (Steele's interest) in the weight loss due to radioactive decay of Radium (Ramsay's work), and in the estimates of density change due to the isotopic distribution of Neon (Aston). Ernst Johannes Hartung was a chemist and astronomer. Educated at the University of Melbourne (BSc 1913, DSc 1919), he became lecturer in 1919, associate professor in 1924, and succeeded Rivett as chair of chemistry in 1928, remaining in this position until 1953. Hartung?s lecturing style surged with enthusiasm and he employed the use of screen projections to demonstrate chemical phenomena to large undergraduate classes. In 1935 he recorded Brownian movement in colloidal solutions on 35 mm cinefilm, which was later copied onto 16 mm film for the Eastman Kodak Co. World Science Library. This can be viewed in the Chemistry laboratory. He researched the photo decomposition of silver halides, and was awarded the David Syme Prize in 1926. He devoted time to the design and construction of a large, new chemistry building for the School of Chemistry (built 1938?1939). During World War II he was approached by Professor Thomas Laby, chairman of the Optical Munitions Panel, to chair the advisory committee on optical materials, to produce high quality optical glass in Australia. This was successful, with large-scale production achieved within ten months at a reasonable cost. Hartung served three terms as general President of the (Royal) Australian Chemical Institute, was an ex-officio councillor of the Council for Scientific and Industrial Research, and a Trustee of the Museum of Applied Science (now part of Museum Victoria).An original Kerr-Grant Microbalance, modified by E.J. Hartung. -
University of Melbourne, School of Chemistry
Combustion Demonstration
John Macadam was a Scottish born analytical chemist, medical practitioner and politician. As a student he soon showed a flair for analytical chemistry, and later also studied medicine. He arrived in Melbourne in 1855 to take up an appointment as lecturer in chemistry and natural science at Scotch College, a position he held until 1865. In 1857 Ferdinand von Mueller named the Macadamia nut after him. He officiated as one of two umpires at one of the earliest recorded games of Australian rules football, between Scotch College and Melbourne Grammar in 1858. Macadam was appointed government analytical chemist in 1858 and health officer to the City of Melbourne in 1860. He represented Castlemaine in the Legislative Assembly between 1859 and 1864. Appointed secretary of the Royal Society of Victoria in 1860 and vice-president in 1863, he was also the secretary of the exploration committee of the Burke and Wills expedition. When the Medical School of the University of Melbourne opened in 1862 Macadam was appointed lecturer in chemistry. He was a skilled, popular and eloquent lecturer, learned and generous with his knowledge. Sadly, just three years later, and aged only 38, he died at sea on the way to give evidence at a murder trial in New Zealand, leaving his widow Elizabeth (n�e Clark), and a son. He was accompanied on that voyage by his assistant, the medical student John Drummond Kirkland, who later became the University?s first Professor of Chemistry. Born in Ireland, John Drummond Kirkland trained as a chemical analyst through apprenticeship in a medical laboratory in Dublin, before migrating to Australia in 1852 and moving to Melbourne in 1855. While still an undergraduate medical student at the University of Melbourne, he was appointed lecturer in chemistry following the sudden death of John Macadam in 1865. Due to the enthusiastic support of his fellow students this temporary role became a permanent appointment the following year. Kirkland continued his studies, graduating in medicine in 1873 and surgery in 1880. His son, John Booth Kirkland, was appointed as his assistant in 1878, later leading to accusations of nepotism. In 1882 John Drummond Kirkland became the University?s first professor of chemistry and metallurgy, continuing until his death in 1885. Today?s researchers use a high performance computing facility named ?Kirkland? after the first Professor of Chemistry at the University of Melbourne. Chemistry was still controlled by the medical school during Kirkland?s career, but became part of the science degree from 1886, along with the appointment of David Orme Masson as professor. Kirkland struggled for University funding to buy new apparatus. To compensate, he bought much from his own personal funds, including analytical chemistry equipment. Chemistry was first taught at Melbourne in the medical school, located in the area now occupied by Physics and the Ian Potter Museum of Art.Demonstration of combustion Mid 19th century, used by McCoy, MacAdam,and Kirkland -
University of Melbourne, School of Chemistry
Silver Salts
Ernst Johannes Hartung was a chemist and astronomer. Educated at the University of Melbourne (BSc 1913, DSc 1919), he became lecturer in 1919, associate professor in 1924, and succeeded Rivett as chair of chemistry in 1928, remaining in this position until 1953. Hartung?s lecturing style surged with enthusiasm and he employed the use of screen projections to demonstrate chemical phenomena to large undergraduate classes. In 1935 he recorded Brownian movement in colloidal solutions on 35 mm cinefilm, which was later copied onto 16 mm film for the Eastman Kodak Co. World Science Library. This can be viewed in the Chemistry laboratory. He researched the photo decomposition of silver halides, and was awarded the David Syme Prize in 1926. He devoted time to the design and construction of a large, new chemistry building for the School of Chemistry (built 1938?1939). During World War II he was approached by Professor Thomas Laby, chairman of the Optical Munitions Panel, to chair the advisory committee on optical materials, to produce high quality optical glass in Australia. This was successful, with large-scale production achieved within ten months at a reasonable cost. Hartung served three terms as general President of the (Royal) Australian Chemical Institute, was an ex-officio councillor of the Council for Scientific and Industrial Research, and a Trustee of the Museum of Applied Science (now part of Museum Victoria).Ag salts used by E.J.Hartung in 1924 photo decomposition expts. -
University of Melbourne, School of Chemistry
Optical Glass
Stages in development of optical glass. Very early experiments by E.J. Hartung. Ernst Johannes Hartung was a chemist and astronomer. Educated at the University of Melbourne (BSc 1913, DSc 1919), he became lecturer in 1919, associate professor in 1924, and succeeded Rivett as chair of chemistry in 1928, remaining in this position until 1953. Hartung?s lecturing style surged with enthusiasm and he employed the use of screen projections to demonstrate chemical phenomena to large undergraduate classes. In 1935 he recorded Brownian movement in colloidal solutions on 35 mm cinefilm, which was later copied onto 16 mm film for the Eastman Kodak Co. World Science Library. This can be viewed in the Chemistry laboratory. He researched the photo decomposition of silver halides, and was awarded the David Syme Prize in 1926. He devoted time to the design and construction of a large, new chemistry building for the School of Chemistry (built 1938?1939). During World War II he was approached by Professor Thomas Laby, chairman of the Optical Munitions Panel, to chair the advisory committee on optical materials, to produce high quality optical glass in Australia. This was successful, with large-scale production achieved within ten months at a reasonable cost. Hartung served three terms as general President of the (Royal) Australian Chemical Institute, was an ex-officio councillor of the Council for Scientific and Industrial Research, and a Trustee of the Museum of Applied Science (now part of Museum Victoria).Optical glass -
University of Melbourne, School of Chemistry
Horseshoe Magnet �
Large horseshoe magnet, given to young E.J. Hartung. by an uncle. Ernst Johannes Hartung was a chemist and astronomer. Educated at the University of Melbourne (BSc 1913, DSc 1919), he became lecturer in 1919, associate professor in 1924, and succeeded Rivett as chair of chemistry in 1928, remaining in this position until 1953. Hartung?s lecturing style surged with enthusiasm and he employed the use of screen projections to demonstrate chemical phenomena to large undergraduate classes. In 1935 he recorded Brownian movement in colloidal solutions on 35 mm cinefilm, which was later copied onto 16 mm film for the Eastman Kodak Co. World Science Library. This can be viewed in the Chemistry laboratory. He researched the photo decomposition of silver halides, and was awarded the David Syme Prize in 1926. He devoted time to the design and construction of a large, new chemistry building for the School of Chemistry (built 1938?1939). During World War II he was approached by Professor Thomas Laby, chairman of the Optical Munitions Panel, to chair the advisory committee on optical materials, to produce high quality optical glass in Australia. This was successful, with large-scale production achieved within ten months at a reasonable cost. Hartung served three terms as general President of the (Royal) Australian Chemical Institute, was an ex-officio councillor of the Council for Scientific and Industrial Research, and a Trustee of the Museum of Applied Science (now part of Museum Victoria).Horseshoe Magnet � -
University of Melbourne, School of Chemistry
Set Of Weights
Ernst Johannes Hartung was a chemist and astronomer. Educated at the University of Melbourne (BSc 1913, DSc 1919), he became lecturer in 1919, associate professor in 1924, and succeeded Rivett as chair of chemistry in 1928, remaining in this position until 1953. Hartung?s lecturing style surged with enthusiasm and he employed the use of screen projections to demonstrate chemical phenomena to large undergraduate classes. In 1935 he recorded Brownian movement in colloidal solutions on 35 mm cinefilm, which was later copied onto 16 mm film for the Eastman Kodak Co. World Science Library. This can be viewed in the Chemistry laboratory. He researched the photo decomposition of silver halides, and was awarded the David Syme Prize in 1926. He devoted time to the design and construction of a large, new chemistry building for the School of Chemistry (built 1938?1939). During World War II he was approached by Professor Thomas Laby, chairman of the Optical Munitions Panel, to chair the advisory committee on optical materials, to produce high quality optical glass in Australia. This was successful, with large-scale production achieved within ten months at a reasonable cost. Hartung served three terms as general President of the (Royal) Australian Chemical Institute, was an ex-officio councillor of the Council for Scientific and Industrial Research, and a Trustee of the Museum of Applied Science (now part of Museum Victoria).Set of analytic weights, used by E.J.H. in most of his work -
University of Melbourne, School of Chemistry
Diethylene Disulphide Methyl Iodide
Born in Ireland, John Drummond Kirkland trained as a chemical analyst through apprenticeship in a medical laboratory in Dublin, before migrating to Australia in 1852 and moving to Melbourne in 1855. While still an undergraduate medical student at the University of Melbourne, he was appointed lecturer in chemistry following the sudden death of John Macadam in 1865. Due to the enthusiastic support of his fellow students this temporary role became a permanent appointment the following year. Kirkland continued his studies, graduating in medicine in 1873 and surgery in 1880. His son, John Booth Kirkland, was appointed as his assistant in 1878, later leading to accusations of nepotism. In 1882 John Drummond Kirkland became the University?s first professor of chemistry and metallurgy, continuing until his death in 1885. Today?s researchers use a high performance computing facility named ?Kirkland? after the first Professor of Chemistry at the University of Melbourne. Chemistry was still controlled by the medical school during Kirkland?s career, but became part of the science degree from 1886, along with the appointment of David Orme Masson as professor. Kirkland struggled for University funding to buy new apparatus. To compensate, he bought much from his own personal funds, including analytical chemistry equipment. Chemistry was first taught at Melbourne in the medical school, located in the area now occupied by Physics and the Ian Potter Museum of Art. (Sir) David Orme Masson was Professor of Chemistry at the University of Melbourne from 1886 to1923. As well as being a distinguished teacher and researcher, he contributed significantly to Australian scientific and public life, being instrumental in the establishment and governance of many important bodies including the CSIRO. Masson supported Antarctic research for 25 years, beginning with Douglas Mawson?s expedition of 1911. Born in England and receiving an MA, BSc and DSc from the University of Edinburgh, he was a gifted, elegant and disciplined lecturer and a researcher of substance. His research work included the theory of solutions, from which emerged the term ?critical solution temperature?; the periodic classification of the elements; and the velocity of migration of ions in solutions. Much of his research was done in collaboration with talented students such as David Rivett and his own son Irvine Masson. Masson was knighted in 1923. He is commemorated by the Masson Theatre and Masson Road at the University of Melbourne; a mountain range and island in Antarctica; a portrait painting by William McInnes in the foyer of the School of Chemistry; the Masson lectureship from the Australian National Research Council; and the Masson memorial scholarship from the Royal Australian Chemical Institute.Stocks used in the Blackie - Masson - J.B.Kirkland work. -
Clunes Museum
Document - SCHOOL OF MINES - CLUNES BRANCH, KEN CLEMMENTS
1889 BALLARAT SCHOOL OF MINES ENJOYED HIGH STATUS IN AUSTRALIA AND OVERSEAS. SEVERAL SMB STUDENTS WERE RESIDENTS OF CLUNES. SCHOOLS OF MINES HAD BEEN ESTABLISHED AT SEVERAL OTHER DISTRICT CENTRES INCLUDING MARYBOROUGH AND CRESWICK, OTHERS WERE TO FOLLOW AT ARARAT, STAWELL AND DAYLESFORD 1890 CLUNES BOROUGH COUNCIL WITH MR JOSEPH BRYANT LEADING, APPROACHED THE BALLARAT SCHOOL OF MINES REQUESTING SUPPORT FOR A BRANCH SCHOOL AT CLUNES OFFERING ELEMENTARY CLASSES WITH SMB STAFF AS LECTURERS SMB COUNCIL AGREED TO STAFF THE SUGGESTED CLASSES. SEVERAL PUBLIC LECTURES WERE ARRANGED AT CLUNES TO HELP CREATE INTEREST IN THE NEW CLUNES BRANCH OF SMB. CLASSES SOMMENCED SOME AT THE CLUNES FREE LIBRARY AND SOME AT THE NEW NORTH CLUNES MINE OFFICE/LABORATORY PER FAVOUR OF JOSEPH BRYANT WHO WAS HONORARY DIRECTOR OF THE BRANCH SCHOOL. 1891 LOWER STUDENT NUMBERS CAUSING CONCERN.. EDUCATION DEPARTMENT REGULATIONS FOR SCHOOLS OF MINES AND TECHNICAL SCHOOLS AND CONFLICTING VIEWS OF GOVERMENTMINISTERS RE SUBJECTS THAT COULD BE TAUGHT , CAUSED DIFFICULTIES. ONE LOCATION FOR ALL CLASSES BECAME THE ANTICIPATED SOLUTION TO MOST PROBLEMS. TITLE CLUNES SCHOOL OF MINES NO 24 APPEARED IN MEDIA NOTICES AND REPORTS WEST PARADE SITE FRONTING SERVICE STREET GRANTED BY CLUNE SBOROUGH COUNCIL TO COUNCIL OF CLUNES SCHOOL OF MINES FOR ERECTION OF BUILDING FOR SCHOOL PURPOSES. BUILDING COMMENCED 1892 NEW BUILDING OPENED IN FEBRUARY. ALL CLASSES CONDUCTED IN NEW BUILDING.SEVERE LIMITATION IN FUNDING FOR TECHNICAL EDUCATION AND IN MOST GOVERNMENT ACTIVITIES WAS EVIDENT NEW REGULATIONS FOR TECHNICAL SCHOOLS ANNOUNCED FOR OPERATION IN 1893, THE RQUIREMENTS FOR FUNDINGS WERE MUCH TOUGHER. 1893 STUDENT NUMBERS STILL VERY DISAPPOINTING. INSPECTORS DENNANT AND SIMPSON VISITED AND ADVISED ON BEST POSSIBLE FUNDING PROCURABLE . CLASSES CEASED AT THE END OF SECOND TERM (JULY) EXCEPT ART CLASSES WHICH COULD COVER DIRECT COSTS FROM STUDENT FEES. 1894 BUILDING LEASED BY BOROUGH COUNCIL TO ANA ..1 GREEN FOLDER WITH HANDWRITTEN NOTE INSIDE WITH SOME QUESTIONS ABOUT THE SCHOOL OF MINES 12/8/2003 .2 262 PAGES THE HISTORY OF THE CLUNES BRANCH OF BALLARAT SCHOOL OF MINES, INDUSTRIES AND SCIENCE IN THE UNIVERSITY OF MELBOURNE 1890 T0 1893 .3 OUTLINE OF THE STORY OF CLUNES BRANCH OF SMB.1 STICKERS ON FRONT: APPENDIX - CLUNES BRANCH OF SMB - CLUNES SCHOOL OF MINES NO. 24 APPENDIXclunes school of mines, ken clemments, 1890-1893