Showing 5 items
matching fan pump
-
Stawell Historical Society Inc
Photograph, Mining Ventilator Pump & Fan on Big Hill 1983
... Mining Ventilator Pump & Fan on Big Hill 1983... Ventilator Pump & Fan on Big Hill 1983 Photograph ...Mining Ventilator on Big Hill 1983stawell mining -
Federation University Historical Collection
Book, New York Post, The School of Mine Quarterly: A Journal of Applied Science, 1889-1809
... fan pump... Electrical Engineering New York Shales fan pump Sucrose Isaac Newton ...The School of Mines Quarterly was a jpournal of Applied Science from Columbia College, New York City.The Index to the School of Mines Quarterlu Volumes X1-XX (1900) and 32 green covered journals school of mines, new york, columbia college, schools of mines, columbia school of mines, witwatersrand goldfield, inter-continental railway, mine ropes, harbor improvememnts on the pacific coast, glycerine and artificial butter industry, transit factors for teh columbia college observatory, tables for the reducation of transit observations, ancienct methods for dividing and recoording time in japan, assay of tin, john strong newberry, standards of linnear measure, comparison of costs of electric lighting, huanchaca mine bolivia, el callao gold mine venezuela, john magnus adams, ores in saxony, hartz and rhenish prussia, hofmann apparatus, adjustment of trangulation, determination of carbonic acid in white lead, lower coals in western clearfield county pennsylvania, old telegraph mine ningham canon utah, mechanical preparation of ores, modern waterworks construction, curdling of milk, french regenerative gas furnace, irrication canals, peruvian salt mine, collection of metallurgic dust and fume, permeability of iron and steel, assay of silver, explosion in a zinc fume condenser, teaching archtectural history, liquid air, between the mine and the smelter, ballistic galvonometer, assay of telluride ores, analytical chemistry, theory and design of the masonry arch, silver pick mine wilson colorado, telegraphy and telephoney, mineralogy, morse code, michigan mining practices, titaniferous magnetites, paradox of the pantheon, rocks from wyoming, witwatersrand goldfields, gaseous sun, alternating current distribution, engineering tests on direct current electrical machinery, thomas egleston, ore dressing, frederick morgan watson, camp bird gold mine and mills, magnetic properties of iron and steel, morphology of organic compounds, antimony, structure of the starch molecule, cerrillos hills new mexico, geology, rossie lead veins, practical electrochemistry, lines of graphic statics, anistic acid by the ozidation of anniseed oil, bromate method for antimony, john krom rees, trust company of america building, helion lamp, frederick arthur goetze, mine surveying, pine wood oils, malleable cast iron, electrolytic treatment of galena, turpentine and pine oils, bluestone, ashokan dam bluestone, road resistances, oxy-gas blowtorch, mine dumps, segregation of steel ingots, masonry dam formulas, putnam county magnetic belts, gases, continuity of education, hydraulic diagrams, standardistion of potassium permanganate, sewerage discharge into sea water, modern waterworks, true column formula, slags from lead furnaces, missouri river, tempreture of gases, rocks, architectural history, modern dome, oil machine, undulations in railway tracks, irrigation engineering, cleps-tachymeters, electrical engineering, new york shales, fan pump, sucrose, isaac newton, french school of anstronomers, electrolytic polarization, benjamin bowden lawrence, diamond drilling, new york ciy water front, engineering profession ethics -
Flagstaff Hill Maritime Museum and Village
Functional object - Lamp, Probably second half of 19th century
OIL LAMPS Oil had been burnt in lamps at least since the Palaeolithic age, and the cheapest light fittings used in Victorian homes had changed little since then, with a simple wick protruding from a small container of whale oil or vegetable oil. However, much brighter and more sophisticated lamps had emerged late in the 18th century, the most important being the Argand oil lamp. This lamp had a broad flat wick held between two metal cylinders to form a circular wick, with air drawn through it and around it. This in itself was a revolutionary idea, but its inventor, Aimé Argand also discovered that by placing a tube or 'chimney' over the flame, the hot gases from the flame rose rapidly creating a draught and drawing air in from below. Fanned by a draught from both inside and outside the circular wick, the poor spluttering flame of early lamps was transformed into a bright, efficient light source (see illustration). The one disadvantage for the Argand oil lamp and its many imitators in the early Victorian period was that the best oil then available, colza, was so thick and viscous that it had to be fed to the wick either by gravity from a reservoir above, or pumped up from below. Most colza oil lamps have a reservoir often shaped like a classical urn to one side which in some fittings obstructed the light. The Sinumbra lamp got around the problem by having a circular reservoir around the base of the glass light shade. One of the most significant improvements of the Victorian period was the introduction of paraffin. Patented in 1850, the price of the new fuel fell dramatically following the discovery of oil in Pennsylvania, USA. As paraffin was much lighter than colza the reservoir could be placed below the flame, enabling many new designs of light fittings. One of the most successful paraffin lamps was the Duplex burner introduced in 1865 which had two wicks side by side and, like the Argand lamp, a clear glass chimney with air drawn from below. Most lamps also had a larger shade around the chimney often of opaque glass to diffuse the light. The shades or diffusers provided an opportunity for decoration, and a variety of shapes, colours and patterns were used. The amount of light which can be produced by a wick is limited by the surface area of the wick and the amount of fuel and air able to reach it. As fuel burns at the tip of the wick only. The gas mantle, on the other hand, provides a much larger three-dimensional surface, and is far more effective as a result. Invented by Carl Aur von Wesbach in 1885, the incandescent mantle was the last major breakthrough in oil and gas lighting of the period, before both succumbed to electric lighting. The mantle consists of a skirt of silk or cotton impregnated with a non-inflammable mixture (thorium and cerium), suspended over a fierce flame. When first ignited, the cotton burns away leaving fine, brittle filaments of non-combustible material in its place which glow white hot or 'incandescent'. The mantle works best with either gas or a fine mist of paraffin produced by a pressurised reservoir which is still widely used in camping lamps today, producing a bright, warm light to rival an electric bulb. https://www.buildingconservation.com/articles/lighting/lighting.htm http://www.artandarchitecture.org.uk/stories/lighting/lighting4.html#:~:text=Oil%20had%20been%20burnt%20in,whale%20oil%20or%20vegetable%20oil.An item of great importance in any home before gas or electricity was available.Kerosene lamp, ceramic, with metal top and wick. Has handle at side and floral hand painting around the body. Glass cover. Metalwork is rusty.Noneflagstaff hill, warrnambool, flagstaff-hill, flagstaff-hill-maritime-museum, maritime-museum, shipwreck-coast, flagstaff-hill-maritime-village, oil lamp, heating, lighting, ceramics -
Moorabbin Air Museum
Book (Item) - Pumps, Fans And Compressors
... Moorabbin melbourne Pumps, Fans And Compressors Book Pumps, Fans ... -
Bendigo Historical Society Inc.
Document - IAN DYETT COLLECTION: AUCTION CATALOGUE - COSTERFIELD SMELTING AND REFINING CO WORKS
Three Auction catalogues with greenish covers for a sale on 3rd July, 1941 at the Costerfield Smelting and Refining Co. Works, Costerfield of Machinery, Plant & Equipment comprising - 4 Diesel Engines, Jaques Crusher, 2 Boilers, Chilian Mill, Huntington Mill, 2 Steam Engines, Blast and other Furnaces, Exhaust Fan, Lighting Plant, Cyanide Plant, Pumps, Buildings, Piping, Tools, etc. One copy has 'Marked Catalogue' written across the top of the front cover. Some of the lots have the price written beside them, some have a note and some prices are written on the right side of the page. Signed at the end - J. H. Curnow & Son 21/7/41. J. H. Curnow & Son were the auctioneers and the Cambridge Press were the printers of the catalogue.business, auctioneers, j h curnow & son pty ltd, ian dyett collection - auction catalogue - costerfield smelting and refining co works, j h curnow & son, j l jamieson, the cambridge press